THE POINCARE CENTER PROBLEM

被引:15
作者
Zoladek, Henryk [1 ]
Llibre, Jaume [2 ]
机构
[1] Univ Warsaw, Inst Math, PL-02097 Warsaw, Poland
[2] Univ Autonoma Barcelona, Dept Matemat, E-08193 Barcelona, Catalonia, Spain
关键词
Polynomial vector field; center; integrable saddle;
D O I
10.1007/s10883-008-9049-5
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We present two examples of real planar polynomial vector fields with an orbitally linearizable saddle point such that they are neither rationally reversible nor Liouvillian integrable. We show that vector fields from one of these examples form an isolated component of the so-called integrable saddle variety. Next, we discuss the problem of partial duality between real centers and real integrable saddles and the problem of continuous moduli for the center variety.
引用
收藏
页码:505 / 535
页数:31
相关论文
共 31 条
[1]  
[Anonymous], 1999, QUAL THEORY DIFF SYS
[2]  
Arnol'd V. I., 1970, VESTNIK MOSKOV U S 1, V25, P52
[3]  
Arnold V. I., 1985, MONOGR MATH, V82
[4]  
Bateman H., 1953, Higher transcendental functions, VII
[5]   Real analytic foliations and the problem of the center [J].
Berthier, M ;
Cerveau, D ;
Neto, AL .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1996, 131 (02) :244-266
[6]  
BOGDANOV RI, 1976, P IG PETROVSKI SEMIN, V2, P37
[7]  
CHAVARRIGA J, 1995, APPL MATH WARSAW, V23, P339
[8]  
Christopher C, 2003, J DYN CONTROL SYST, V9, P311, DOI 10.1023/A:1024643521094
[9]  
Dulac H., 1908, Bull. Am. Math. Soc, V32, P230
[10]  
Fronville A, 1998, FUND MATH, V157, P191