AutoQSAR: an automated machine learning tool for best-practice quantitative structure-activity relationship modeling

被引:117
作者
Dixon, Steven L. [1 ]
Duan, Jianxin [2 ]
Smith, Ethan [3 ]
Von Bargen, Christopher D. [1 ]
Sherman, Woody [1 ]
Repasky, Matthew P. [3 ]
机构
[1] Schrodinger Inc, 120 West 45th St, New York, NY 10036 USA
[2] Schrodinger GmbH, Dynamostr 13, D-68165 Mannheim, Baden Wurttembe, Germany
[3] Schrodinger Inc, 101 SW Main St, Portland, OR 97204 USA
关键词
binding affinity prediction; blood-brain barrier permeability; carcinogenicity; fish bioconcentration factor; mutagenicity; QSAR; solubility; QSAR MODEL; PREDICTION; 2D; FINGERPRINTS; VALIDATION;
D O I
10.4155/fmc-2016-0093
中图分类号
R914 [药物化学];
学科分类号
100701 ;
摘要
Aim: We introduce AutoQSAR, an automated machine-learning application to build, validate and deploy quantitative structure-activity relationship (QSAR) models. Methodology/results: The process of descriptor generation, feature selection and the creation of a large number of QSAR models has been automated into a single workflow within AutoQSAR. The models are built using a variety of machine-learning methods, and each model is scored using a novel approach. Effectiveness of the method is demonstrated through comparison with literature QSAR models using identical datasets for six end points: protein-ligand binding affinity, solubility, blood-brain barrier permeability, carcinogenicity, mutagenicity and bioaccumulation in fish. Conclusion: AutoQSAR demonstrates similar or better predictive performance as compared with published results for four of the six endpoints while requiring minimal human time and expertise.
引用
收藏
页码:1825 / 1839
页数:15
相关论文
共 40 条
[1]   Molecular cloning, pharmacological characterization, and histochemical distribution of frog vasotocin and mesotocin receptors [J].
Acharjee, S ;
Do-Rego, JL ;
Oh, DY ;
Moon, JS ;
Ahn, RS ;
Lee, K ;
Bai, DG ;
Vaudry, H ;
Kwon, HB ;
Seong, JY .
JOURNAL OF MOLECULAR ENDOCRINOLOGY, 2004, 33 (01) :293-313
[2]   Kernel-Based Partial Least Squares: Application to Fingerprint-Based QSAR with Model Visualization [J].
An, Yuling ;
Sherman, Woody ;
Dixon, Steven L. .
JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2013, 53 (09) :2312-2321
[3]   Hole filling and library optimization: Application to commercially available fragment libraries [J].
An, Yuling ;
Sherman, Woody ;
Dixon, Steven L. .
BIOORGANIC & MEDICINAL CHEMISTRY, 2012, 20 (18) :5379-5387
[4]  
[Anonymous], 2016, CANV V2 8
[5]   Similarity searching of chemical databases using atom environment descriptors (MOLPRINT 2D): Evaluation of performance [J].
Bender, A ;
Mussa, HY ;
Glen, RC ;
Reiling, S .
JOURNAL OF CHEMICAL INFORMATION AND COMPUTER SCIENCES, 2004, 44 (05) :1708-1718
[6]   Molecular similarity searching using atom environments, information-based feature selection, and a naive Bayesian classifier [J].
Bender, A ;
Mussa, HY ;
Glen, RC ;
Reiling, S .
JOURNAL OF CHEMICAL INFORMATION AND COMPUTER SCIENCES, 2004, 44 (01) :170-178
[7]   Predictive Models for Carcinogenicity and Mutagenicity: Frameworks, State-of-the-Art, and Perspectives [J].
Benfenati, E. ;
Benigni, R. ;
DeMarini, D. M. ;
Helma, C. ;
Kirkland, D. ;
Martin, T. M. ;
Mazzatorta, P. ;
Ouedraogo-Arras, G. ;
Richard, A. M. ;
Schilter, B. ;
Schoonen, W. G. E. J. ;
Snyder, R. D. ;
Yang, C. .
JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH PART C-ENVIRONMENTAL CARCINOGENESIS & ECOTOXICOLOGY REVIEWS, 2009, 27 (02) :57-90
[8]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[9]   In silico models for the prediction of dose-dependent human hepatotoxicity [J].
Cheng, A ;
Dixon, SL .
JOURNAL OF COMPUTER-AIDED MOLECULAR DESIGN, 2003, 17 (12) :811-823
[10]   QSAR Modeling: Where Have You Been? Where Are You Going To? [J].
Cherkasov, Artem ;
Muratov, Eugene N. ;
Fourches, Denis ;
Varnek, Alexandre ;
Baskin, Igor I. ;
Cronin, Mark ;
Dearden, John ;
Gramatica, Paola ;
Martin, Yvonne C. ;
Todeschini, Roberto ;
Consonni, Viviana ;
Kuz'min, Victor E. ;
Cramer, Richard ;
Benigni, Romualdo ;
Yang, Chihae ;
Rathman, James ;
Terfloth, Lothar ;
Gasteiger, Johann ;
Richard, Ann ;
Tropsha, Alexander .
JOURNAL OF MEDICINAL CHEMISTRY, 2014, 57 (12) :4977-5010