Water-Induced Self-Blown Non-Isocyanate Polyurethane Foams

被引:62
作者
Bourguignon, Maxime [1 ]
Grignard, Bruno [1 ]
Detrembleur, Christophe [1 ]
机构
[1] Univ Liege, Ctr Educ & Res Macromol CERM, Dept Chem, CESAM Res Unit, Sart Tilman,B6A, B-4000 Liege, Belgium
关键词
Carbon Dioxide; Cyclic Carbonate; Foam; Non-Isocyanate Polyurethane; Water; POLYMERIC CARBONATES; NANOPHASE SEPARATION; CYCLIC CARBONATES; POLYHYDROXYURETHANE; DICARBONATE; THERMOSETS; CHEMISTRY; EPOXIDES; RECOVERY; DIAMINES;
D O I
10.1002/anie.202213422
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
For 80 years, polyisocyanates and polyols were central building blocks for the industrial fabrication of polyurethane (PU) foams. By their partial hydrolysis, isocyanates release CO2 that expands the PU network. Substituting this toxic isocyanate-based chemistry by a more sustainable variant-that in situ forms CO2 by hydrolysis of a comonomer-is urgently needed for producing greener cellular materials. Herein, we report a facile, up-scalable process, potentially compatible to existing infrastructures, to rapidly prepare water-induced self-blown non-isocyanate polyurethane (NIPU) foams. We show that formulations composed of poly(cyclic carbonate)s and polyamines furnish rigid or flexible NIPU foams by partial hydrolysis of cyclic carbonates in the presence of a catalyst. By utilizing readily available low cost starting materials, this simple but robust process gives access to greener PU foams, expectedly responding to the sustainability demands of many sectors.
引用
收藏
页数:10
相关论文
共 69 条
[1]   Organocatalyzed coupling of carbon dioxide with epoxides for the synthesis of cyclic carbonates: catalyst design and mechanistic studies [J].
Alves, M. ;
Grignard, B. ;
Mereau, R. ;
Jerome, C. ;
Tassaing, T. ;
Detrembleur, C. .
CATALYSIS SCIENCE & TECHNOLOGY, 2017, 7 (13) :2651-2684
[2]  
[Anonymous], 2020, ANGEW CHEM, V132, P17181
[3]  
[Anonymous], Patent application pending, Patent No. [PCT/EP2022/075171, 2022075171]
[4]   Recent progress in the catalytic transformation of carbon dioxide into biosourced organic carbonates [J].
Aomchad, Vatcharaporn ;
Cristofol, Alex ;
Della Monica, Francesco ;
Limburg, Bart ;
D'Elia, Valerio ;
Kleij, Arjan W. .
GREEN CHEMISTRY, 2021, 23 (03) :1077-1113
[5]   Linseed and soybean oil-based polyurethanes prepared via the non-isocyanate route and catalytic carbon dioxide conversion [J].
Baehr, Moritz ;
Muelhaupt, Rolf .
GREEN CHEMISTRY, 2012, 14 (02) :483-489
[6]   Non-lsocyanate Polyurethane Thermoplastic Elastomer: Amide-Based Chain Extender Yields Enhanced Nanophase Separation and Properties in Polyhydroxyurethane [J].
Beniah, Goliath ;
Fortman, David J. ;
Heath, William H. ;
Dichtel, William R. ;
Torkelson, John M. .
MACROMOLECULES, 2017, 50 (11) :4425-4434
[7]   Combined Effects of Carbonate and Soft-Segment Molecular Structures on the Nanophase Separation and Properties of Segmented Polyhydroxyurethane [J].
Beniah, Goliath ;
Chen, Xi ;
Uno, Brice E. ;
Liu, Kun ;
Leitsch, Emily K. ;
Jeon, Junho ;
Heath, William H. ;
Scheidt, Karl A. ;
Torkelson, John M. .
MACROMOLECULES, 2017, 50 (08) :3193-3203
[8]   Tuning nanophase separation behavior in segmented polyhydroxyurethane via judicious choice of soft segment [J].
Beniah, Goliath ;
Uno, Brice E. ;
Lan, Tian ;
Jeon, Junho ;
Heath, William H. ;
Scheidt, Karl A. ;
Torkelson, John M. .
POLYMER, 2017, 110 :218-227
[9]   Flexible and Bio-Based Nonisocyanate Polyurethane (NIPU) Foams [J].
Blattmann, Hannes ;
Lauth, Marc ;
Muelhaupt, Rolf .
MACROMOLECULAR MATERIALS AND ENGINEERING, 2016, 301 (08) :944-952
[10]   Renewable natural resources as green alternative substrates to obtain bio-based non-isocyanate polyurethanes-review [J].
Blazek, Kamila ;
Datta, Janusz .
CRITICAL REVIEWS IN ENVIRONMENTAL SCIENCE AND TECHNOLOGY, 2019, 49 (03) :173-211