Goal-Oriented Adaptivity and Multilevel Preconditioning for the Poisson-Boltzmann Equation

被引:10
作者
Aksoylu, Burak [2 ,3 ]
Bond, Stephen D. [1 ]
Cyr, Eric C. [4 ]
Holst, Michael [5 ]
机构
[1] Sandia Natl Labs, Multiphys Simulat Technol Dept, Albuquerque, NM 87185 USA
[2] TOBB Univ Econ & Technol, Dept Math, TR-06560 Ankara, Turkey
[3] Louisiana State Univ, Dept Math, Baton Rouge, LA 70803 USA
[4] Sandia Natl Labs, Scalable Algorithms Dept, Albuquerque, NM 87185 USA
[5] Univ Calif San Diego, Dept Math, La Jolla, CA 92093 USA
基金
美国国家科学基金会;
关键词
Poisson-Boltzmann equation; Adaptive finite element methods; Multilevel preconditioning; Goal-oriented a posteriori error estimation; Solvation free energy; Electrostatics; FINITE-ELEMENT SOLUTION; ERROR ESTIMATION; ELECTROSTATIC FORCES; ITERATIVE METHODS; REFINEMENT; ALGORITHMS; SYSTEMS; COMPUTATION; MOLECULES; SURFACE;
D O I
10.1007/s10915-011-9539-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we develop goal-oriented error indicators to drive adaptive refinement algorithms for the Poisson-Boltzmann equation. Empirical results for the solvation free energy linear functional demonstrate that goal-oriented indicators are not sufficient on their own to lead to a superior refinement algorithm. To remedy this, we propose a problem-specific marking strategy using the solvation free energy computed from the solution of the linear regularized Poisson-Boltzmann equation. The convergence of the solvation free energy using this marking strategy, combined with goal-oriented refinement, compares favorably to adaptive methods using an energy-based error indicator. Due to the use of adaptive mesh refinement, it is critical to use multilevel preconditioning in order to maintain optimal computational complexity. We use variants of the classical multigrid method, which can be viewed as generalizations of the hierarchical basis multigrid and Bramble-Pasciak-Xu (BPX) preconditioners.
引用
收藏
页码:202 / 225
页数:24
相关论文
共 89 条
[1]  
Ainsworth M., 2000, PUR AP M-WI
[2]   Multilevel solvers for unstructured surface meshes [J].
Aksoylu, B ;
Khodakovsky, A ;
Schröder, P .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2005, 26 (04) :1146-1165
[3]   An odyssey into local refinement and multilevel preconditioning III: Implementation and numerical experiments [J].
Aksoylu, B ;
Bond, S ;
Holst, M .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2003, 25 (02) :478-498
[4]  
Aksoylu B., 2005, 0503 ICES UT AUST
[5]  
Aksoylu B., 2004, 0450 ICES UT AUST
[6]  
Aksoylu B., 2005, 0504 UT AUST ICES
[7]   Optimality of multilevel preconditioners for local mesh refinement in three dimensions [J].
Aksoylu, Burak ;
Holst, Michael .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2006, 44 (03) :1005-1025
[8]  
[Anonymous], 1994, MULTILEVEL METHODS P
[9]  
[Anonymous], 2002, TEXTS APPL MATH
[10]  
[Anonymous], 1993, ACTA NUMER