Random Walks on Polytopes and an Affine Interior Point Method for Linear Programming

被引:39
作者
Kannan, Ravindran [1 ]
Narayanan, Hariharan [2 ]
机构
[1] Microsoft Res Labs, Algorithms Res Grp, Bangalore 560080, Karnataka, India
[2] Univ Chicago, Dept Comp Sci, Chicago, IL 60637 USA
关键词
random walks; polytopes; interior point methods; POLYNOMIAL-TIME ALGORITHM; HIT-AND-RUN; LOGCONCAVE FUNCTIONS; VOLUME ALGORITHM; CONVEX-BODIES;
D O I
10.1287/moor.1110.0519
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Let K be a polytope in R-n defined by m linear inequalities. We give a new Markov chain algorithm to draw a nearly uniform sample from K. The underlying Markov chain is the first to have a mixing time that is strongly polynomial when started from a "central" point. We use this result to design an affine interior point algorithm that does a single random walk to solve linear programs approximately.
引用
收藏
页码:1 / 20
页数:20
相关论文
共 24 条
[1]  
Abernethy J., 2008, 21 ANN C LEARN THEOR, P263
[2]   THE COMPLEXITY OF PARTIAL DERIVATIVES [J].
BAUR, W ;
STRASSEN, V .
THEORETICAL COMPUTER SCIENCE, 1983, 22 (03) :317-330
[3]   Projective re-normalization for improving the behavior of a homogeneous conic linear system [J].
Belloni, Alexandre ;
Freund, Robert M. .
MATHEMATICAL PROGRAMMING, 2009, 118 (02) :279-299
[4]  
DIACONIS P, 1985, ANN STAT, V13, P845, DOI 10.1214/aos/1176349634
[5]  
Dikin I.I., 1967, Soviet Mathematics Doklady, V8, P674
[6]   A RANDOM POLYNOMIAL-TIME ALGORITHM FOR APPROXIMATING THE VOLUME OF CONVEX-BODIES [J].
DYER, M ;
FRIEZE, A ;
KANNAN, R .
JOURNAL OF THE ACM, 1991, 38 (01) :1-17
[7]  
Kannan R, 1997, RANDOM STRUCT ALGOR, V11, P1, DOI 10.1002/(SICI)1098-2418(199708)11:1<1::AID-RSA1>3.0.CO
[8]  
2-X
[9]  
Kannan Ravi, 1997, STOC '97, P696
[10]   A NEW POLYNOMIAL-TIME ALGORITHM FOR LINEAR-PROGRAMMING [J].
KARMARKAR, N .
COMBINATORICA, 1984, 4 (04) :373-395