Droplet formation in microfluidic T-junction generators operating in the transitional regime. II. Modeling

被引:105
作者
Glawdel, Tomasz [1 ]
Elbuken, Caglar [1 ]
Ren, Carolyn L. [1 ]
机构
[1] Univ Waterloo, Dept Mech & Mechatron Engn, Waterloo, ON N2L 3G1, Canada
来源
PHYSICAL REVIEW E | 2012年 / 85卷 / 01期
基金
加拿大创新基金会;
关键词
FLOWS;
D O I
10.1103/PhysRevE.85.016323
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
This is the second part of a two-part study on the generation of droplets at a microfluidic T-junction operating in the transition regime. In the preceding paper [Phys. Rev. E 85, 016322 (2012)], we presented our experimental observations of droplet formation and decomposed the process into three sequential stages defined as the lag, filling, and necking stages. Here we develop a model that describes the performance of microfluidic T-junction generators working in the squeezing to transition regimes where confinement of the droplet dominates the formation process. The model incorporates a detailed geometric description of the drop shape during the formation process combined with a force balance and necking criteria to define the droplet size, production rate, and spacing. The model inherently captures the influence of the intersection geometry, including the channel width ratio and height-to-width ratio, capillary number, and flow ratio, on the performance of the generator. The model is validated by comparing it to speed videos of the formation process for several T-junction geometries across a range of capillary numbers and viscosity ratios.
引用
收藏
页数:12
相关论文
共 17 条
[1]   Microfluidic methods for generating continuous droplet streams [J].
Christopher, G. F. ;
Anna, S. L. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2007, 40 (19) :R319-R336
[2]   Experimental observations of the squeezing-to-dripping transition in T-shaped microfluidic junctions [J].
Christopher, Gordon F. ;
Noharuddin, N. Nadia ;
Taylor, Joshua A. ;
Anna, Shelley L. .
PHYSICAL REVIEW E, 2008, 78 (03)
[3]   Transition from squeezing to dripping in a microfluidic T-shaped junction [J].
De Menech, M. ;
Garstecki, P. ;
Jousse, F. ;
Stone, H. A. .
JOURNAL OF FLUID MECHANICS, 2008, 595 :141-161
[4]  
Garstecki P, 2006, LAB CHIP, V6, P693
[5]   Droplet formation in microfluidic T-junction generators operating in the transitional regime. II. Modeling [J].
Glawdel, Tomasz ;
Elbuken, Caglar ;
Ren, Carolyn L. .
PHYSICAL REVIEW E, 2012, 85 (01)
[6]  
Günther A, 2006, LAB CHIP, V6, P1487, DOI 10.1039/b609851g
[7]   Suppression of instabilities in multiphase flow by geometric confinement [J].
Humphry, Katherine J. ;
Ajdari, Armand ;
Fernandez-Nieves, Alberto ;
Stone, Howard A. ;
Weitz, David A. .
PHYSICAL REVIEW E, 2009, 79 (05)
[8]   Compact model for multi-phase liquid-liquid flows in micro-fluidic devices [J].
Jousse, F ;
Lian, GP ;
Janes, R ;
Melrose, J .
LAB ON A CHIP, 2005, 5 (06) :646-656
[9]   Droplet traffic in microfluidic networks: A simple model for understanding and designing [J].
Schindler, Michael ;
Ajdari, Armand .
PHYSICAL REVIEW LETTERS, 2008, 100 (04)
[10]   Dynamic Interfacial Tension Measurements with Microfluidic Y-Junctions [J].
Steegmans, Maartje L. J. ;
Warmerdam, Anja ;
Schroen, Karin G. P. H. ;
Boom, Remko M. .
LANGMUIR, 2009, 25 (17) :9751-9758