Beyond abstract elementary classes: On the model theory of geometric lattices

被引:6
作者
Hyttinen, Tapani [1 ]
Paolini, Gianluca [1 ]
机构
[1] Univ Helsinki, Dept Math & Stat, Helsinki, Finland
关键词
Geometric lattices; Abstract elementary classes; Matroids; Classification theory; Independence; AMPLE;
D O I
10.1016/j.apal.2017.10.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Based on Crapo's theory of one point extensions of combinatorial geometries, we find various classes of geometric lattices that behave very well from the point of view of stability theory. One of them, (K-3, <=), is omega-stable, it has a monster model and an independence calculus that satisfies all the usual properties of non-forking. On the other hand, these classes are rather unusual, e.g. in (K-3, <=) the Smoothness Axiom fails, and so (K-3, <=) is not an AEC. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:117 / 145
页数:29
相关论文
共 11 条
[1]  
Aigner M., 1979, COMBINATORIAL THEORY
[3]   Ample hierarchy [J].
Baudisch, Andreas ;
Martin-Pizarro, Amador ;
Ziegler, Martin .
FUNDAMENTA MATHEMATICAE, 2014, 224 (02) :97-153
[4]  
Crapo H.H., 1970, On the foundations of combinatorial theory: Combinatorial geometries
[5]   SINGLE-ELEMENT EXTENSIONS OF MATROIDS [J].
CRAPO, HH .
JOURNAL OF RESEARCH OF THE NATIONAL BUREAU OF STANDARDS SECTION B-MATHEMATICS AND MATHEMATICAL, 1965, B 69 (1-2) :55-+
[6]   Non-forking frames in abstract elementary classes [J].
Jarden, Adi ;
Shelah, Saharon .
ANNALS OF PURE AND APPLIED LOGIC, 2013, 164 (03) :135-191
[7]   STABLE GEOMETRIC LATTICES [J].
MEIREMBEKOV, KA ;
SHEGIROV, KM .
SIBERIAN MATHEMATICAL JOURNAL, 1993, 34 (03) :504-512
[8]  
Oxley J.G., 1993, Matroid Theory
[9]  
Shelah S., 1990, CLASSIFICATION THEOR
[10]  
Shelah S., 2009, CLASSIFICATION THEOR