DINGO: differential network analysis in genomics

被引:88
作者
Ha, Min Jin [1 ]
Baladandayuthapani, Veerabhadran [1 ]
Do, Kim-Anh [1 ]
机构
[1] Univ Texas MD Anderson Canc Ctr, Dept Biostat, Houston, TX 77030 USA
关键词
GENE-EXPRESSION; GLIOBLASTOMA; PATHWAY; COEXPRESSION; METABOLISM; SELECTION; BIOLOGY; GLIOMA; MODEL; EGFR;
D O I
10.1093/bioinformatics/btv406
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: Canc er progression and development are initiated by aberrations in various molecular networks through coordinated changes across multiple genes and pathways. It is important to understand how these networks change under different stress conditions and/or patient-specific groups to infer differential patterns of activation and inhibition. Existing methods are limited to correlation networks that are independently estimated from separate group-specific data and without due consideration of relationships that are conserved across multiple groups. Method: We propose a pathway-based differential network analysis in genomics (DINGO) model for estimating group-specific networks and making inference on the differential networks. DINGO jointly estimates the group-specific conditional dependencies by decomposing them into global and group-specific components. The delineation of these components allows for a more refined picture of the major driver and passenger events in the elucidation of cancer progression and development. Results: Simulation studies demonstrate that DINGO provides more accurate group-specific conditional dependencies than achieved by using separate estimation approaches. We apply DINGO to key signaling pathways in glioblastoma to build differential networks for long-term survivors and short-term survivors in The Cancer Genome Atlas. The hub genes found by mRNA expression, DNA copy number, methylation and microRNA expression reveal several important roles in glioblastoma progression.
引用
收藏
页码:3413 / 3420
页数:8
相关论文
共 48 条
[1]   Comparing Statistical Methods for Constructing Large Scale Gene Networks [J].
Allen, Jeffrey D. ;
Xie, Yang ;
Chen, Min ;
Girard, Luc ;
Xiao, Guanghua .
PLOS ONE, 2012, 7 (01)
[2]   Rewiring of Genetic Networks in Response to DNA Damage [J].
Bandyopadhyay, Sourav ;
Mehta, Monika ;
Kuo, Dwight ;
Sung, Min-Kyung ;
Chuang, Ryan ;
Jaehnig, Eric J. ;
Bodenmiller, Bernd ;
Licon, Katherine ;
Copeland, Wilbert ;
Shales, Michael ;
Fiedler, Dorothea ;
Dutkowski, Janusz ;
Guenole, Aude ;
van Attikum, Haico ;
Shokat, Kevan M. ;
Kolodner, Richard D. ;
Huh, Won-Ki ;
Aebersold, Ruedi ;
Keogh, Michael-Christopher ;
Krogan, Nevan J. ;
Ideker, Trey .
SCIENCE, 2010, 330 (6009) :1385-1389
[3]  
Banerjee O, 2008, J MACH LEARN RES, V9, P485
[4]   Emergence of scaling in random networks [J].
Barabási, AL ;
Albert, R .
SCIENCE, 1999, 286 (5439) :509-512
[5]   Towards systematic functional characterization of cancer genomes [J].
Boehm, Jesse S. ;
Hahn, William C. .
NATURE REVIEWS GENETICS, 2011, 12 (07) :487-498
[6]   Rewiring makes the difference [J].
Califano, Andrea .
MOLECULAR SYSTEMS BIOLOGY, 2011, 7
[7]   Cancer research: past, present and future [J].
Cao, Ya ;
DePinho, Ronald A. ;
Ernst, Matthias ;
Vousden, Karen .
NATURE REVIEWS CANCER, 2011, 11 (10) :749-754
[8]   Comprehensive genomic characterization defines human glioblastoma genes and core pathways [J].
Chin, L. ;
Meyerson, M. ;
Aldape, K. ;
Bigner, D. ;
Mikkelsen, T. ;
VandenBerg, S. ;
Kahn, A. ;
Penny, R. ;
Ferguson, M. L. ;
Gerhard, D. S. ;
Getz, G. ;
Brennan, C. ;
Taylor, B. S. ;
Winckler, W. ;
Park, P. ;
Ladanyi, M. ;
Hoadley, K. A. ;
Verhaak, R. G. W. ;
Hayes, D. N. ;
Spellman, Paul T. ;
Absher, D. ;
Weir, B. A. ;
Ding, L. ;
Wheeler, D. ;
Lawrence, M. S. ;
Cibulskis, K. ;
Mardis, E. ;
Zhang, Jinghui ;
Wilson, R. K. ;
Donehower, L. ;
Wheeler, D. A. ;
Purdom, E. ;
Wallis, J. ;
Laird, P. W. ;
Herman, J. G. ;
Schuebel, K. E. ;
Weisenberger, D. J. ;
Baylin, S. B. ;
Schultz, N. ;
Yao, Jun ;
Wiedemeyer, R. ;
Weinstein, J. ;
Sander, C. ;
Gibbs, R. A. ;
Gray, J. ;
Kucherlapati, R. ;
Lander, E. S. ;
Myers, R. M. ;
Perou, C. M. ;
McLendon, Roger .
NATURE, 2008, 455 (7216) :1061-1068
[9]   MYC-Induced Cancer Cell Energy Metabolism and Therapeutic Opportunities [J].
Dang, Chi V. ;
Le, Anne ;
Gao, Ping .
CLINICAL CANCER RESEARCH, 2009, 15 (21) :6479-6483
[10]   From 'differential expression' to 'differential networking' - identification of dysfunctional regulatory networks in diseases [J].
de la Fuente, Alberto .
TRENDS IN GENETICS, 2010, 26 (07) :326-333