Influence of dietary concentrations of protein, lipid and carbohydrate on growth, protein and energy utilization, body composition, and plasma titres of growth hormone and insulin-like growth factor-1 in non-transgenic and growth hormone transgenic coho salmon, Oncorhynchus kisutch (Walbaum)

被引:64
作者
Higgs, D. A. [1 ]
Sutton, J. N. [1 ]
Kim, H. [1 ]
Oakes, J. D. [1 ]
Smith, J. [1 ]
Biagi, C. [1 ]
Rowshandeli, M. [1 ]
Devlin, R. H. [1 ]
机构
[1] Univ British Columbia, Dept Fisheries & Oceans, Ctr Aquaculture & Environm Res, W Vancouver, BC V7V 1N6, Canada
关键词
Protein; Lipid; Carbohydrate; Coho salmon; Growth hormone; Insulin-like growth factor; BREAM SPARUS-AURATA; RAINBOW-TROUT; ATLANTIC SALMON; GENE-EXPRESSION; SOMATOTROPIC AXIS; FISH GROWTH; IGF-I; LIPOSTATIC REGULATION; THYROID-FUNCTION; FOOD-INTAKE;
D O I
10.1016/j.aquaculture.2008.08.036
中图分类号
S9 [水产、渔业];
学科分类号
0908 ;
摘要
This study compared the ability of juvenile non-transgenic (NT) and transgenic growth hormone (T; gene construct OnMTGH1) coho salmon (Oncorhynchus kisutch) to metabolically utilize energy from lipid and carbohydrate for growth at two dietary protein concentrations. Triplicate groups of size-matched (initial weight, 28.2-29.1 g) NT and T salmon held in 10.5-10.8 degrees C well water on a natural phototocycle (12.25 h ->. 8.25 h) were each fed one of four isoenergetic (similar to 17.5 MJ of digestible energy (DE)/kg) dry diets twice daily to satiation for 83 days. These diets contained 340 g (LP) or 430 g (HP) of estimated digestible protein (DP)/kg and either 123 g (LL) or 164 g (HL) of estimated digestible lipid (DL)/kg at each DP level (dry weight basis). Estimated digestible carbohydrate (DCHO) concentrations ranged from 45 to 269 g/kg to equalize dietary DE. Under the preceding conditions 46-66% of NT and 18.7-27.5% of T coho, depending upon diet treatment, exhibited no growth or lost weight during the study. NT coho are known to grow slowly or lose weight between the fall equinox and winter solstice but this was unexpected for T colic. Considering all fish T coho, regardless of diet treatment, exhibited significantly higher specific growth rates (SGR) than NT fish due to enhanced feed intake, feed and protein (gross and available deposited) utilization and generally improved available energy utilization. Diet treatment did not affect the growth performance of T fish. Within NT fish, the HP diets supported best gross and available protein and energy utilization. SGR values for growing fish (F-G) only followed identical trends to those for all fish in relation to diet treatment Regardless of fish genotype, terminal hepatosomatic indices for FG were directly related to dietary DCHO content and maximum values were noted in NT fish fed LP-LL (significantly higher than observed in NT or T fish fed HP-HL). Final whole body protein concentrations adjusted for dissimilar fish size were higher in T fish fed HP-HL than in T fish fed LP diets and NT fish fed LP-LL This was also true for T fish fed HP-LL versus T fish fed the LP diets. Within HP groups, whole body lipid and energy contents were generally higher in NT versus T fish whereas within the LP groups energy content was significantly higher in T versus NT fish and was highest in T fish fed LP-LL Terminal plasma titres for GH and IGF-1 (all fish) were significantly higher in T than in NT fish and were generally uninfluenced by diet treatment Non-growing NT and T fish had elevated CH relative to NT and T fish that grew. Also, GH was higher in growing T fish relative to growing NT fish whereas the opposite was true in non-growing fish. Plasma IGF-1 levels were higher in growing NT and T fish than in their respective non-growing counterparts. Within FG only, IGF-1 levels were higher in T versus NT fish. It is concluded that T coho have enhanced ability to effectively utilize DE from DCHO relative to NT fish especially when DP is near the bottom of the optimal range and DL is concurrently suboptimal for NT fish. This is likely due to the elevated titres of GH, IGF-1 and 3.5,3'-triiodo-t-thyronine (measured in another study) in T fish. Also, the enhanced ability of T fish to store energy under these dietary conditions suggests enzymatic improvements in their anaerobic and aerobic metabolism of glucose. Crown Copyright (c) 2008 Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:127 / 137
页数:11
相关论文
共 66 条
[1]   Things we have learned from tilapia islet xenotransplantation [J].
Alexander, Emily L. R. ;
Dooley, Kent C. ;
Pohajdak, Bill ;
Xu, Bao-You ;
Wright, James R., Jr. .
GENERAL AND COMPARATIVE ENDOCRINOLOGY, 2006, 148 (02) :125-131
[2]   Actions of growth hormone on carbohydrate metabolism and osmoregulation of rainbow trout (Oncorhynchus mykiss) [J].
Alvarellos, SS ;
Míguez, JM ;
Soengas, JL .
GENERAL AND COMPARATIVE ENDOCRINOLOGY, 2005, 141 (03) :214-225
[3]  
[Anonymous], 1993, NUTR REQ FISH
[4]   Influence of high-carbohydrate enriched diets on plasma insulin levels and insulin and IGF-I receptors in trout [J].
Baños, N ;
Baró, J ;
Castejón, C ;
Navarro, I ;
Gutiérrez, J .
REGULATORY PEPTIDES, 1998, 77 (1-3) :55-62
[5]   Response of the somatotropic axis of juvenile coho salmon to alterations in plane of nutrition with an analysis of the relationships among growth rate and circulating IGF-I and 41 kDa IGFBP [J].
Beckman, BR ;
Shimizu, M ;
Gadberry, BA ;
Cooper, KA .
GENERAL AND COMPARATIVE ENDOCRINOLOGY, 2004, 135 (03) :334-344
[6]   Growth hormone endocrinology of salmonids:: regulatory mechanisms and mode of action [J].
Björnsson, BT ;
Johansson, V ;
Benedet, S ;
Einarsdottir, IE ;
Hildahl, J ;
Agustsson, T ;
Jönsson, E .
FISH PHYSIOLOGY AND BIOCHEMISTRY, 2002, 27 (3-4) :227-242
[7]   Is the growth rate of fish set by digestive enzymes or metabolic capacity of the tissues? Insight from transgenic coho salmon [J].
Blier, PU ;
Lemieux, H ;
Devlin, RH .
AQUACULTURE, 2002, 209 (1-4) :379-384
[8]   PLASMA GROWTH-HORMONE LEVELS IN NORMAL AND STUNTED YEARLING COHO SALMON, ONCORHYNCHUS-KISUTCH [J].
BOLTON, JP ;
YOUNG, G ;
NISHIOKA, RS ;
HIRANO, T ;
BERN, HA .
JOURNAL OF EXPERIMENTAL ZOOLOGY, 1987, 242 (03) :379-382
[9]   Metabolic and mitogenic effects of IGF-I and insulin on muscle cells of rainbow trout [J].
Castillo, J ;
Codina, M ;
Martínez, ML ;
Navarro, I ;
Gutiérrez, J .
AMERICAN JOURNAL OF PHYSIOLOGY-REGULATORY INTEGRATIVE AND COMPARATIVE PHYSIOLOGY, 2004, 286 (05) :R935-R941
[10]  
Cho C Y, 1990, World Rev Nutr Diet, V61, P132