Aperiodic substitution systems and their Bratteli diagrams

被引:47
作者
Bezuglyi, S. [1 ]
Kwiatkowski, J. [2 ]
Medynets, K. [1 ]
机构
[1] Inst Low Temp Phys, Dept Math, UA-61103 Kharkov, Ukraine
[2] Univ Warmia & Mazury Olsztyn, Fac Math & Comp Sci, PL-10561 Olsztyn, Poland
关键词
NON-PRIMITIVE SUBSTITUTIONS; CANTOR MINIMAL SYSTEMS; DYNAMICAL-SYSTEMS; ORBIT EQUIVALENCE; RECOGNIZABILITY; SEQUENCES; WORDS;
D O I
10.1017/S0143385708000230
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study aperiodic substitution dynamical systems arising from non-primitive substitutions. We prove that the Vershik horneornorphism phi of it stationary ordered Bratteli diagram is topologically conjugate to an aperiodic substitution system if and only if no restriction of phi to a minimal component is conjugate to an odometer. We also show that every aperiodic substitution system generated by a substitution with nesting property is conjugate to the Vershik map of a stationary ordered Bratteli diagram. It is proved that every aperiodic substitution system is recognizable. The classes of m-primitive substitutions and derivative substitutions associated with them are studied. We discuss also the notion of expansiveness for Cantor dynamical systems of finite rank.
引用
收藏
页码:37 / 72
页数:36
相关论文
共 27 条
[1]   The Rokhlin lemma for homeomorphisms of a cantor set [J].
Bezuglyi, S ;
Dooley, AH ;
Medynets, K .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 133 (10) :2957-2964
[2]   Augmenting dimension group invariants for substitution dynamics [J].
Carlsen, TM ;
Eilers, S .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2004, 24 :1015-1039
[3]   Ordered K-groups associated to substitutional dynamics [J].
Carlsen, Toke A. ;
Eilers, Soren .
JOURNAL OF FUNCTIONAL ANALYSIS, 2006, 238 (01) :99-117
[4]   Finite-rank Bratteli-Vershik diagrams are expansive [J].
Downarowicz, Tomasz ;
Maass, Alejandro .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2008, 28 :739-747
[5]   A characterization of substitutive sequences using return words [J].
Durand, F .
DISCRETE MATHEMATICS, 1998, 179 (1-3) :89-101
[6]   Substitutional dynamical systems, Bratteli diagrams and dimension groups [J].
Durand, F ;
Host, B ;
Skau, C .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1999, 19 :953-993
[7]   A theorem of Cobham for non-primitive substitutions [J].
Durand, F .
ACTA ARITHMETICA, 2002, 104 (03) :225-241
[8]   Substitution dynamical systems on infinite alphabets [J].
Ferencz, Sebastien .
ANNALES DE L INSTITUT FOURIER, 2006, 56 (07) :2315-2343
[9]  
FOGG RN, 2002, LECT NOTES MATH, V1794
[10]   K-groups associated with substitution minimal systems [J].
Forrest, AH .
ISRAEL JOURNAL OF MATHEMATICS, 1997, 98 (1) :101-139