Nonlinear boundary value problems for mixed-type fractional equations and Ulam-Hyers stability

被引:2
作者
Wang, Huiwen [1 ]
Li, Fang [1 ]
机构
[1] Yunnan Normal Univ, Sch Math, Kunming 650092, Yunnan, Peoples R China
关键词
mixed fractional derivatives; nonlinear boundary value problem; Mittag-Leffler functions; Ulam-Hyers stability;
D O I
10.1515/math-2020-0051
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we discuss the nonlinear boundary value problems involving both left Riemann-Liouville and right Caputo-type fractional derivatives. By using some new techniques and properties of the Mittag-Leffler functions, we introduce a formula of the solutions for the aforementioned problems, which can be regarded as a novelty item. Moreover, we obtain the existence result of solutions for the aforementioned problems and present the Ulam-Hyers stability of the fractional differential equation involving two different fractional derivatives. An example is given to illustrate our theoretical result.
引用
收藏
页码:916 / 929
页数:14
相关论文
共 19 条
[1]   Fractional variational calculus and the transversality conditions [J].
Agrawal, O. P. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (33) :10375-10384
[2]  
[Anonymous], 1993, An Introduction to the Fractional Calculus and Fractional Differential Equations
[3]  
Atanackovic T., 2007, Fract. Calc. Appl. Anal, V10, P139, DOI DOI 10.1002/ZAMM.200710335
[4]   Fractional oscillator equation - Transformation into integral equation and numerical solution [J].
Blaszczyk, Tomasz ;
Ciesielski, Mariusz .
APPLIED MATHEMATICS AND COMPUTATION, 2015, 257 :428-435
[5]   Solvability of a boundary value problem at resonance [J].
Guezane-Lakoud, A. ;
Khaldi, R. ;
Kilicman, A. .
SPRINGERPLUS, 2016, 5
[6]  
Hyers D.H., 1998, STABILITY FUNCTIONAL
[7]   On the stability of the linear functional equation [J].
Hyers, DH .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1941, 27 :222-224
[8]  
Katugampola UN, 2014, BULL MATH ANAL APPL, V6, P1
[9]   Higher order fractional boundary value problems for mixed type derivatives [J].
Khaldi R. ;
Guezane-Lakoud A. .
Journal of Nonlinear Functional Analysis, 2017, 2017
[10]  
Kilbas AA., 2006, THEORY APPL FRACTION