Wide consensus aggregation in the Wasserstein space. Application to location-scatter families

被引:12
作者
Alvarez-Esteban, Pedro C. [1 ]
del Barrio, Eustasio [1 ]
Cuesta-Albertos, Juan A. [2 ]
Matran, Carlos [1 ]
机构
[1] Univ Valladolid, IMUVA, Dept Estadist & Invest Operat, Paseo Belen 7, E-47011 Valladolid, Spain
[2] Univ Cantabria, Dept Matemat Estadist & Comp, Avda Castros 48, E-39005 Santander, Spain
关键词
impartial trimming; parallelized inference; robust aggregation; trimmed barycenter; trimmed distributions; Wasserstein distance; wide consensus; RANDOM-VARIABLES; TRANSPORTATION; DISTRIBUTIONS; REARRANGEMENT; BARYCENTERS;
D O I
10.3150/17-BEJ957
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We introduce a general theory for a consensus-based combination of estimations of probability measures. Potential applications include parallelized or distributed sampling schemes as well as variations on aggregation from resampling techniques like boosting or bagging. Taking into account the possibility of very discrepant estimations, instead of a full consensus we consider a "wide consensus" procedure. The approach is based on the consideration of trimmed barycenters in the Wasserstein space of probability measures. We provide general existence and consistency results as well as suitable properties of these robustified Frechet means. In order to get quick applicability, we also include characterizations of barycenters of probabilities that belong to (non necessarily elliptical) location and scatter families. For these families, we provide an iterative algorithm for the effective computation of trimmed barycenters, based on a consistent algorithm for computing barycenters, guarantying applicability in a wide setting of statistical problems.
引用
收藏
页码:3147 / 3179
页数:33
相关论文
共 43 条
[1]   BARYCENTERS IN THE WASSERSTEIN SPACE [J].
Agueh, Martial ;
Carlier, Guillaume .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2011, 43 (02) :904-924
[2]   Uniqueness and approximate computation of optimal incomplete transportation plans [J].
Alvarez-Esteban, P. C. ;
del Barrio, E. ;
Cuesta-Albertos, J. A. ;
Matran, C. .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2011, 47 (02) :358-375
[3]   A fixed-point approach to barycenters in Wasserstein space [J].
Alvarez-Esteban, Pedro C. ;
del Barrio, E. ;
Cuesta-Albertos, J. A. ;
Matran, C. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 441 (02) :744-762
[4]   Similarity of samples and trimming [J].
Alvarez-Esteban, Pedro C. ;
Del Barrio, Eustasio ;
Cuesta-Albertos, Juan A. ;
Matran, Carlos .
BERNOULLI, 2012, 18 (02) :606-634
[5]  
[Anonymous], P 31 INT C MACH LEAR
[6]  
[Anonymous], ARXIV12122562V5
[7]   Geometric means in a novel vector space structure on symmetric positive-definite matrices [J].
Arsigny, Vincent ;
Fillard, Pierre ;
Pennec, Xavier ;
Ayache, Nicholas .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2007, 29 (01) :328-347
[8]   ITERATIVE BREGMAN PROJECTIONS FOR REGULARIZED TRANSPORTATION PROBLEMS [J].
Benamou, Jean-David ;
Carlier, Guillaume ;
Cuturi, Marco ;
Nenna, Luca ;
Peyre, Gabriel .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2015, 37 (02) :A1111-A1138
[9]   Distribution's template estimate with Wasserstein metrics [J].
Boissard, Emmanuel ;
Le Gouic, Thibaut ;
Loubes, Jean-Michel .
BERNOULLI, 2015, 21 (02) :740-759
[10]   Bagging predictors [J].
Breiman, L .
MACHINE LEARNING, 1996, 24 (02) :123-140