Heat Flow, Heat Generation, and the Thermal State of the Lithosphere

被引:136
作者
Furlong, Kevin P. [1 ]
Chapman, David S. [2 ]
机构
[1] Penn State Univ, Dept Geosci, University Pk, PA 16802 USA
[2] Univ Utah, Dept Geol & Geophys, Salt Lake City, UT 84112 USA
来源
ANNUAL REVIEW OF EARTH AND PLANETARY SCIENCES, VOL 41 | 2013年 / 41卷
关键词
global heat budget; radiogenic heat production; geotherms; CONTINENTAL-CRUST; VERTICAL-DISTRIBUTION; TRIPLE JUNCTION; UPPER-MANTLE; EVOLUTION; ROCKS; GEOTHERMS; TEMPERATURE; BATHOLITH; THICKNESS;
D O I
10.1146/annurev.earth.031208.100051
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The thermal structure of the lithosphere controls many properties and processes of Earth's crust. The total similar to 47-TW heat loss of Earth is key to understanding and modeling this thermal structure, as is partitioning the various sources of that heat into heat entering the base of the lithosphere, heat generated within the lithosphere by radioactive decay (primarily within the continental crust), and secular cooling of the mantle lithosphere (primarily in oceanic lithosphere). A set of framework geotherms for the continental lithosphere explains deep crustal melting in high heat flow regions, metamorphic pressure-temperature (P-T) space in the crust, partial melting at the base of the lithosphere to produce an S-wave low-velocity zone in Phanerozoic and younger terranes, and the P-T fields inferred from mantle xenoliths. Important perturbations to a standard thermal state are produced by orogenic overprints, transient thermal regimes, and exhumation.
引用
收藏
页码:385 / 410
页数:26
相关论文
共 50 条
[41]   Nanoscale Thermal AFM of Polymers: Transient Heat Flow Effects [J].
Duvigneau, Joost ;
Schonherr, Holger ;
Vancso, G. Julius .
ACS NANO, 2010, 4 (11) :6932-6940
[42]   Electromagnetohydrodynamic flow of blood and heat transfer in a capillary with thermal radiation [J].
Sinha, A. ;
Shit, G. C. .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2015, 378 :143-151
[43]   Variational principles for thermal transport in nanosystems with heat slip flow [J].
Jou, D. ;
Lebon, G. ;
Criado-Sancho, M. .
PHYSICAL REVIEW E, 2010, 82 (03)
[44]   Geodynamics of Anatolia: Lithosphere Thermal Structure and Thickness [J].
Artemieva, Irina M. ;
Shulgin, Alexcy .
TECTONICS, 2019, 38 (12) :4465-4487
[45]   Effect of Thermal Radiation and Suction on Convective Heat Transfer of Nanofluid along a Wedge in the Presence of Heat Generation/Absorption [J].
Kasmani, Ruhaila Md ;
Sivasankaran, S. ;
Bhuvaneswari, M. ;
Siri, Zailan .
22ND NATIONAL SYMPOSIUM ON MATHEMATICAL SCIENCES (SKSM22), 2015, 1682
[46]   Thermal State of the Guaymas Basin Derived From Gas Hydrate Bottom Simulating Reflections and Heat Flow Measurements [J].
Sarkar, Sudipta ;
Moser, Manuel ;
Berndt, Christian ;
Doll, Mechthild ;
Boettner, Christoph ;
Chi, Wu-Cheng ;
Klaeschen, Dirk ;
Galerne, Christophe ;
Karstens, Jens ;
Geilert, Sonja ;
Mortera-Gutierrez, C. ;
Hensen, Christian .
JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 2022, 127 (08)
[47]   Radioactive Heat Production and Terrestrial Heat Flow in the Xiong'an Area, North China [J].
Cui, Yue ;
Zhu, Chuanqing ;
Qiu, Nansheng ;
Tang, Boning ;
Guo, Sasa .
ENERGIES, 2019, 12 (24)
[48]   Feasibility Analysis on Hydrate Exploitation by Heat Generation Powders Thermal Stimulation [J].
Zhang, Yangyang ;
Ji, Peng ;
Yang, Hemin ;
Zhang, Jianbo ;
Wang, Zhiyuan ;
Sun, BaoJiang .
ENERGY & FUELS, 2024, 38 (16) :15340-15358
[49]   Radiogenic heat production variability of some common lithological groups and its significance to lithospheric thermal modeling [J].
Vila, M. ;
Fernandez, M. ;
Jimenez-Munt, I. .
TECTONOPHYSICS, 2010, 490 (3-4) :152-164
[50]   Paleo-heat flows, radioactive heat generation, and the cooling and deformation history of Mercury [J].
Ruiz, Javier ;
Lopez, Valle ;
Egea-Gonzalez, Isabel .
ICARUS, 2013, 225 (01) :86-92