Heat Flow, Heat Generation, and the Thermal State of the Lithosphere

被引:125
作者
Furlong, Kevin P. [1 ]
Chapman, David S. [2 ]
机构
[1] Penn State Univ, Dept Geosci, University Pk, PA 16802 USA
[2] Univ Utah, Dept Geol & Geophys, Salt Lake City, UT 84112 USA
来源
ANNUAL REVIEW OF EARTH AND PLANETARY SCIENCES, VOL 41 | 2013年 / 41卷
关键词
global heat budget; radiogenic heat production; geotherms; CONTINENTAL-CRUST; VERTICAL-DISTRIBUTION; TRIPLE JUNCTION; UPPER-MANTLE; EVOLUTION; ROCKS; GEOTHERMS; TEMPERATURE; BATHOLITH; THICKNESS;
D O I
10.1146/annurev.earth.031208.100051
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The thermal structure of the lithosphere controls many properties and processes of Earth's crust. The total similar to 47-TW heat loss of Earth is key to understanding and modeling this thermal structure, as is partitioning the various sources of that heat into heat entering the base of the lithosphere, heat generated within the lithosphere by radioactive decay (primarily within the continental crust), and secular cooling of the mantle lithosphere (primarily in oceanic lithosphere). A set of framework geotherms for the continental lithosphere explains deep crustal melting in high heat flow regions, metamorphic pressure-temperature (P-T) space in the crust, partial melting at the base of the lithosphere to produce an S-wave low-velocity zone in Phanerozoic and younger terranes, and the P-T fields inferred from mantle xenoliths. Important perturbations to a standard thermal state are produced by orogenic overprints, transient thermal regimes, and exhumation.
引用
收藏
页码:385 / 410
页数:26
相关论文
共 50 条
[31]   Heat flow data and thermal structure in northeastern Japan [J].
Matsumoto, Takumi ;
Yamada, Ryuji ;
Iizuka, Satoshi .
EARTH PLANETS AND SPACE, 2022, 74 (01)
[32]   Io: Volcanic thermal sources and global heat flow [J].
Veeder, Glenn J. ;
Davies, Ashley Gerard ;
Matson, Dennis L. ;
Johnson, Torrence V. ;
Williams, David A. ;
Radebaugh, Jani .
ICARUS, 2012, 219 (02) :701-722
[33]   Study on dynamic heat extraction characteristics of heat exchanger tube embedded in thermal flow reverse reactor for heat recovery [J].
Shi, Yueyue ;
Liu, Yongqi ;
Zhou, Yuqi ;
Sun, Peng ;
Mao, Mingming ;
Zhang, Yuqiu .
PROCESS SAFETY AND ENVIRONMENTAL PROTECTION, 2022, 162 :846-858
[34]   Heat generation and melting heat transfer effects on MHD flow of Carreau fluid in a porous medium [J].
Adnan, Awais ;
Muhammad, Shakoor ;
Zeb, Salman ;
Makinde, Oluwole Daniel .
ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2024, 104 (04)
[35]   The characteristics of heat flow and lithospheric thermal structure in Junggar Basin, northwest China [J].
Rao Song ;
Hu Sheng-Biao ;
Zhu Chuan-Qing ;
Tang Xiao-Yin ;
Li Wei-Wei ;
Wang Ji-Yang .
CHINESE JOURNAL OF GEOPHYSICS-CHINESE EDITION, 2013, 56 (08) :2760-2770
[36]   Modeling of thermal contacts with heat generation: Application to electrothermal problems [J].
El Maakoul, Anas ;
Remy, Benjamin ;
Degiovanni, Alain .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2019, 140 :293-302
[37]   Crustal heat production and estimate of terrestrial heat flow in central East Antarctica, with implications for thermal input to the East Antarctic ice sheet [J].
Goodge, John W. .
CRYOSPHERE, 2018, 12 (02) :491-504
[38]   Terrestrial heat flow and crustal thermal structure of the Gonghe-Guide area, northeastern Qinghai-Tibetan plateau [J].
Zhang, Chao ;
Jiang, Guangzheng ;
Shi, Yizuo ;
Wang, Zhuting ;
Wang, Yi ;
Li, Shengtao ;
Jia, Xiaofeng ;
Hu, Shengbiao .
GEOTHERMICS, 2018, 72 :182-192
[39]   Heat flow, seismic cut-off depth and thermal modeling of the Fennoscandian Shield [J].
Veikkolainen, Toni ;
Kukkonen, Ilmo T. ;
Tiira, Timo .
GEOPHYSICAL JOURNAL INTERNATIONAL, 2017, 211 (03) :1414-1427
[40]   Electromagnetohydrodynamic flow of blood and heat transfer in a capillary with thermal radiation [J].
Sinha, A. ;
Shit, G. C. .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2015, 378 :143-151