Cancer as a moving target: understanding the composition and rebound growth kinetics of recurrent tumors

被引:14
作者
Foo, Jasmine [1 ]
Leder, Kevin
Mumenthaler, Shannon M. [2 ]
机构
[1] Univ Minnesota, Sch Math, Minneapolis, MN 55455 USA
[2] Univ So Calif, Keck Sch Med, Ctr Appl Mol Med, Los Angeles, CA 90033 USA
基金
美国国家科学基金会;
关键词
biomedicine; evolutionary theory; population genetics - theoretical; DRUG-RESISTANCE; LUNG-CANCER; INTRATUMOR HETEROGENEITY; ACQUIRED-RESISTANCE; QUANTITATIVE MODEL; CLONAL SELECTION; STOCHASTIC-MODEL; GENE-EXPRESSION; SOLID TUMORS; STEM-CELLS;
D O I
10.1111/eva.12019
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We introduce a stochastic branching process model of diversity in recurrent tumors whose growth is driven by drug resistance. Here, an initially declining population can escape certain extinction via the production of mutants whose fitness is drawn at random from a mutational fitness landscape. Using a combination of analytical and computational techniques, we study the rebound growth kinetics and composition of the relapsed tumor. We find that the diversity of relapsed tumors is strongly affected by the shape of the mutational fitness distribution. Interestingly, the model exhibits a qualitative shift in behavior depending on the balance between mutation rate and initial population size. In high mutation settings, recurrence timing is a strong predictor of the diversity of the relapsed tumor, whereas in the low mutation rate regime, recurrence timing is a good predictor of tumor aggressiveness. Analysis reveals that in the high mutation regime, stochasticity in recurrence timing is driven by the random survival of small resistant populations rather than variability in production of resistance from the sensitive population, whereas the opposite is true in the low mutation rate setting. These conclusions contribute to an evolutionary understanding of the suitability of tumor size and time of recurrence as prognostic and predictive factors in cancer.
引用
收藏
页码:54 / 69
页数:16
相关论文
共 49 条
[1]   A quantitative measurement of the human somatic mutation rate [J].
Araten, DJ ;
Golde, DW ;
Zhang, RH ;
Thaler, HT ;
Gargiulo, L ;
Notaro, R ;
Luzzatto, L .
CANCER RESEARCH, 2005, 65 (18) :8111-8117
[2]  
Athreya KB., 2004, Branching Processes
[3]   Optimal control for a stochastic model of cancer chemotherapy [J].
Coldman, AJ ;
Murray, JM .
MATHEMATICAL BIOSCIENCES, 2000, 168 (02) :187-200
[4]   A STOCHASTIC-MODEL FOR THE ORIGIN AND TREATMENT OF TUMORS CONTAINING DRUG-RESISTANT CELLS [J].
COLDMAN, AJ ;
GOLDIE, JH .
BULLETIN OF MATHEMATICAL BIOLOGY, 1986, 48 (3-4) :279-292
[5]   Turning gray: The natural history of lung cancer over time [J].
Detterbeck, Frank C. ;
Gibson, Christopher J. .
JOURNAL OF THORACIC ONCOLOGY, 2008, 3 (07) :781-792
[6]   The molecular evolution of acquired resistance to targeted EGFR blockade in colorectal cancers [J].
Diaz, Luis A., Jr. ;
Williams, Richard T. ;
Wu, Jian ;
Kinde, Isaac ;
Hecht, J. Randolph ;
Berlin, Jordan ;
Allen, Benjamin ;
Bozic, Ivana ;
Reiter, Johannes G. ;
Nowak, Martin A. ;
Kinzler, Kenneth W. ;
Oliner, Kelly S. ;
Vogelstein, Bert .
NATURE, 2012, 486 (7404) :537-540
[7]   Clonal evolution in relapsed acute myeloid leukaemia revealed by whole-genome sequencing [J].
Ding, Li ;
Ley, Timothy J. ;
Larson, David E. ;
Miller, Christopher A. ;
Koboldt, Daniel C. ;
Welch, John S. ;
Ritchey, Julie K. ;
Young, Margaret A. ;
Lamprecht, Tamara ;
McLellan, Michael D. ;
McMichael, Joshua F. ;
Wallis, John W. ;
Lu, Charles ;
Shen, Dong ;
Harris, Christopher C. ;
Dooling, David J. ;
Fulton, Robert S. ;
Fulton, Lucinda L. ;
Chen, Ken ;
Schmidt, Heather ;
Kalicki-Veizer, Joelle ;
Magrini, Vincent J. ;
Cook, Lisa ;
McGrath, Sean D. ;
Vickery, Tammi L. ;
Wendl, Michael C. ;
Heath, Sharon ;
Watson, Mark A. ;
Link, Daniel C. ;
Tomasson, Michael H. ;
Shannon, William D. ;
Payton, Jacqueline E. ;
Kulkarni, Shashikant ;
Westervelt, Peter ;
Walter, Matthew J. ;
Graubert, Timothy A. ;
Mardis, Elaine R. ;
Wilson, Richard K. ;
DiPersio, John F. .
NATURE, 2012, 481 (7382) :506-510
[8]   Intratumor Heterogeneity in Evolutionary Models of Tumor Progression [J].
Durrett, Rick ;
Foo, Jasmine ;
Leder, Kevin ;
Mayberry, John ;
Michor, Franziska .
GENETICS, 2011, 188 (02) :461-477
[9]   Evolutionary dynamics of tumor progression with random fitness values [J].
Durrett, Rick ;
Foo, Jasmine ;
Leder, Kevin ;
Mayberry, John ;
Michor, Franziska .
THEORETICAL POPULATION BIOLOGY, 2010, 78 (01) :54-66
[10]   Stochastic gene expression in a single cell [J].
Elowitz, MB ;
Levine, AJ ;
Siggia, ED ;
Swain, PS .
SCIENCE, 2002, 297 (5584) :1183-1186