Resorbable scaffold based chronic neural electrode arrays

被引:13
作者
Ceyssens, Frederik [1 ]
van Kuyck, Kris [2 ]
Vande Velde, Greetje [3 ]
Welkenhuysen, Marleen [4 ]
Stappers, Linda [5 ]
Nuttin, Bart [2 ]
Puers, Robert [1 ]
机构
[1] Katholieke Univ Leuven, Dept ESAT MICAS, B-3001 Louvain, Belgium
[2] Katholieke Univ Leuven, Res Grp Expt Neurosurg & Neuroanat, B-3000 Louvain, Belgium
[3] Katholieke Univ Leuven, Biomed MRI, O&N, B-3000 Louvain, Belgium
[4] IMEC VZW, B-3001 Louvain, Belgium
[5] Katholieke Univ Leuven, Dept MTM, B-3001 Louvain, Belgium
关键词
Neural electrode; Neural electrode array; BCI; BMI; ECoG; Chitosan; Scaffold; Neural recording; Neural stimulation; Thin film; Chronic; BRAIN; CHITOSAN;
D O I
10.1007/s10544-013-9748-x
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
We have developed a novel type of neural electrode array for future brain-machine interfaces (BMI) and neural implants requiring high resolution recording and stimulation on the surface of brain lesions or on the cortex. The devices differ on two points from commonly used thin film electrode arrays: first, the thin film backbone of the implant is exceptionally thin (down to 5 microns) and finely patterned into spring-like structures. This increases the flexibility of the electrode array and allows stretching and conforming better to a quasi spherical cavity surface. Second, the thin film backbone of the device is reinforced with a porous layer of resorbable chitosan. This design aims at minimal invasiveness and low mechanical irritation during prolonged use, while the chitosan matrix ensures the implant is stiff enough for practical handling during the implantation procedure and dissolves afterwards. Furthermore, the chitosan adds haemostatic and antiseptic properties to the implant and improves adhesion. In the article, the design and fabrication process are presented. In vitro and long term in vivo test results over a 12 month period are shown. By adopting the use of a resorbable scaffold-like material as main constituent of neural implants, the presented work opens up the possibility of applying tissue engineering techniques to further improve neural implant technology.
引用
收藏
页码:481 / 493
页数:13
相关论文
共 41 条
[1]   Fabrication technique of a compressible biocompatible interconnect using a thin film transfer process [J].
Aarts, A. A. A. ;
Srivannavit, O. ;
Wise, K. D. ;
Yoon, E. ;
Puers, R. ;
Van Hoof, C. ;
Neves, H. P. .
JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2011, 21 (07)
[2]   An interconnect for out-of-plane assembled biomedical probe arrays [J].
Aarts, A. A. A. ;
Neves, H. P. ;
Puers, R. P. ;
Van Hoof, C. .
JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2008, 18 (06)
[3]  
[Anonymous], FRONT NEUROENGINEERI
[4]   A high-yield microassembly structure for three-dimensional microelectrode arrays [J].
Bai, Q ;
Wise, KD ;
Anderson, DJ .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2000, 47 (03) :281-289
[5]   Polytrodes: High-density silicon electrode arrays for large-scale multiunit recording [J].
Blanche, TJ ;
Spacek, MA ;
Hetke, JF ;
Swindale, NV .
JOURNAL OF NEUROPHYSIOLOGY, 2005, 93 (05) :2987-3000
[6]   CHITOSAN - A NEW TOPICAL HEMOSTATIC AGENT FOR DIFFUSE CAPILLARY BLEEDING IN BRAIN-TISSUE [J].
BRANDENBERG, G ;
LEIBROCK, LG ;
SHUMAN, R ;
MALETTE, WG ;
QUIGLEY, H .
NEUROSURGERY, 1984, 15 (01) :9-13
[7]   Single-neuron stability during repeated reaching in macaque premotor cortex [J].
Chestek, Cynthia A. ;
Batista, Aaron P. ;
Santhanam, Gopal ;
Yu, Byron M. ;
Afshar, Afsheen ;
Cunningham, John P. ;
Gilja, Vikash ;
Ryu, Stephen I. ;
Churchland, Mark M. ;
Shenoy, Krishna V. .
JOURNAL OF NEUROSCIENCE, 2007, 27 (40) :10742-10750
[8]  
Crompton K, 2006, J MATER SCI-MATER M, V17
[9]  
Cui X, 2001, J BIOMED MATER RES, V56
[10]   Spatial spectral analysis of human electrocorticograms including the alpha and gamma bands [J].
Freeman, WJ ;
Rogers, LJ ;
Holmes, MD ;
Silbergeld, DL .
JOURNAL OF NEUROSCIENCE METHODS, 2000, 95 (02) :111-121