Lowering the limit of detection in high spatial resolution electron beam microanalysis with the microcalorimeter energy dispersive X-ray spectrometer

被引:19
作者
Newbury, D
Wollman, D
Irwin, K
Hilton, G
Martinis, J
机构
[1] Natl Inst Stand & Technol, Gaithersburg, MD 20899 USA
[2] Natl Inst Stand & Technol, Boulder, CO 80303 USA
关键词
electron probe X-ray microanalysis; energy dispersive X-ray spectrometry; microanalysis; microcalorimetry; scanning electron microscopy; X-ray microanalysis; X-ray spectrometry;
D O I
10.1016/S0304-3991(99)00028-5
中图分类号
TH742 [显微镜];
学科分类号
摘要
Low-beam-energy X-ray microanalysis with the field-emission-gun scanning electron microscope suffers limitations due to physical factors of X-ray generation. Instrumental limitations are imposed by the poor resolution of the conventional semiconductor energy dispersive X-ray spectrometry. Wavelength dispersive X-ray spectrometry provides sufficient resolution to solve spectroscopic problems, but the poor geometric efficiency and the single channel nature of spectrum measurement restrict its practical use for low-beam-energy microanalysis. The microcalorimeter energy dispersive X-ray spectrometer combines high resolution ( < 10 eV) with energy dispersive operation. The utility of this new spectrometer is examined in four categories: (1) qualitative analysis; (2) quantitative analysis; (3) chemical speciation studies, and (4) measurement of trace constituents. For the low-beam-energy regime, the microcalorimeter energy dispersive X-ray spectrometer provides important new performance capabilities for qualitative analysis and chemical speciation studies. However, there are limitations for quantitative studies imposed by detector geometrical characteristics. In addition, trace element detection is impractical below 0.001 mass fraction with low-beam energy ( < 5 keV) because of count rate limitations. Published by Elsevier Science B.V.
引用
收藏
页码:73 / 88
页数:16
相关论文
共 50 条
[21]   An interlaboratory comparison of energy dispersive X-ray microanalysis (EDX) of titanium and zirkonium nitrides [J].
Procop, M ;
Roder, A .
MIKROCHIMICA ACTA, 1997, 125 (1-4) :33-39
[22]   X-ray chemical shift determination by energy dispersive detection [J].
KallithrakasKontos, N .
SPECTROCHIMICA ACTA PART B-ATOMIC SPECTROSCOPY, 1996, 51 (13) :1655-1659
[23]   The utility value of high voltage electron microscopy for X-ray microanalysis [J].
Nagata, T .
ACTA HISTOCHEMICA ET CYTOCHEMICA, 2003, 36 (04) :299-315
[24]   Spatial lithium quantification by backscattered electron microscopy coupled with energy-dispersive X-ray spectroscopy [J].
Oesterreicher, Johannes A. ;
Simson, Clemens ;
Grossalber, Alexander ;
Frank, Simon ;
Gneiger, Stefan .
SCRIPTA MATERIALIA, 2021, 194
[25]   X-ray energy dispersive spectroscopy of uranium ore using a TES microcalorimeter mounted on a field-emission scanning electron microscope [J].
Maehata, Keisuke ;
Idemitsu, Kazuya ;
Tanaka, Keiichi .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2011, 648 (01) :285-289
[26]   Scanning Electron Microscopy/ Energy Dispersive Spectrometry Fixed-beam or Overscan X-ray Microanalysis of Particles Can Miss the Real Structure: X-ray Spectrum Image Mapping Reveals the True Nature [J].
Newbury, Dale E. ;
Ritchie, Nicholas W. M. .
SCANNING MICROSCOPIES 2013: ADVANCED MICROSCOPY TECHNOLOGIES FOR DEFENSE, HOMELAND SECURITY, FORENSIC, LIFE, ENVIRONMENTAL, AND INDUSTRIAL SCIENCES, 2013, 8729
[27]   High-voltage energy dispersive x-ray spectrometry using a low-energy primary beam [J].
Wu, Ying ;
Klyachko, Dimitri ;
Davilla, Scott ;
Spallas, James ;
Indermuehle, Scott ;
Muray, Lawrence P. .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2014, 32 (06)
[28]   Scanning electron microscopy images and energy-dispersive X-ray microanalysis of the stapes in otosclerosis and van der Hoeve syndrome [J].
Vallejo-Valdezate, LA ;
Martín-Gil, J ;
José-Yacamán, M ;
Martín-Gil, FJ ;
Gil-Carcedo, LM .
LARYNGOSCOPE, 2000, 110 (09) :1505-1510
[29]   Standardless quantitative electron-excited X-ray microanalysis by energy-dispersive spectrometry: What is its proper role? [J].
Newbury, DE .
MICROSCOPY AND MICROANALYSIS, 1998, 4 (06) :585-597
[30]   Atomic-level detection by X-ray microanalysis in the analytical electron microscope [J].
Watanabe, M ;
Williams, DB .
ULTRAMICROSCOPY, 1999, 78 (1-4) :89-101