Additive twists of Fourier coefficients of modular forms

被引:25
作者
Godber, Daniel [1 ]
机构
[1] Texas A&M Univ, Dept Math, College Stn, TX 77843 USA
关键词
Fourier coefficients of modular forms; Uniform Wilton estimate; EXPONENTIAL-SUMS; CUSP FORMS;
D O I
10.1016/j.jnt.2012.07.010
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study sums of the form E(n <= N)a(n)e(2 pi i alpha n), where alpha is any real number and the a(n) are the Fourier coefficients of either a holomorphic cusp form, a Maass cusp form, or the symmetricsquare lift of a holomorphic cusp form. We obtain bounds that are uniform in both a and the form itself. We also improve a bound on a sum of the form Sigma(n <= N)a(n)e(2 pi i(alpha n+beta n theta)), where the a(n) are the Fourier coefficients of a holomorphic cusp form, alpha and beta are any real numbers, and 0 <= 0 < 1. This last bound is uniform in alpha, but not with respect to the form. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:83 / 104
页数:22
相关论文
共 16 条
  • [1] [Anonymous], 1997, GRAD STUD MATH
  • [2] [Anonymous], 2002, GRAD STUD MATH
  • [3] GELBART S, 1978, ANN SCI ECOLE NORM S, V11, P471
  • [4] Huxley M. N., 1996, Area, Lattice points, and Exponential sums, V13
  • [5] IWANIEC H, 1992, J REINE ANGEW MATH, V428, P139
  • [6] Iwaniec H., 2004, AMS C PUBLICATIONS, V53
  • [7] Iwaniec H, 2000, PUBL MATH-PARIS, P55
  • [8] Li X., 2011, PREPRINT
  • [9] Additive twists of Fourier coefficients of symmetric-square lifts
    Li, Xiaoqing
    Young, Matthew P.
    [J]. JOURNAL OF NUMBER THEORY, 2012, 132 (07) : 1626 - 1640
  • [10] On exponential sums involving Fourier coefficients of cusp forms
    Liu, Kui
    Ren, Xiumin
    [J]. JOURNAL OF NUMBER THEORY, 2012, 132 (01) : 171 - 181