A perspective on interaction effects in genetic association studies

被引:75
作者
Aschard, Hugues [1 ]
机构
[1] Harvard TH Sch Publ Hlth, Dept Epidemiol, Bldg 2,Room 249b,665 Huntington Ave, Boston, MA 02115 USA
关键词
genetic risk score; GWAS; interaction; joint test; multivariate analysis; power; pratt index; statistical method; variance explained; SUGAR-SWEETENED BEVERAGES; ENVIRONMENT INTERACTION; RELATIVE IMPORTANCE; VARIABLE IMPORTANCE; REGRESSION; RISK; METAANALYSIS; PREDICTORS; VARIANTS; DESIGNS;
D O I
10.1002/gepi.21989
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
The identification of gene-gene and gene-environment interaction in human traits and diseases is an active area of research that generates high expectation, and most often lead to high disappointment. This is partly explained by a misunderstanding of the inherent characteristics of standard regression-based interaction analyses. Here, I revisit and untangle major theoretical aspects of interaction tests in the special case of linear regression; in particular, I discuss variables coding scheme, interpretation of effect estimate, statistical power, and estimation of variance explained in regard of various hypothetical interaction patterns. Linking this components it appears first that the simplest biological interaction models-in which the magnitude of a genetic effect depends on a common exposure-are among the most difficult to identify. Second, I highlight the demerit of the current strategy to evaluate the contribution of interaction effects to the variance of quantitative outcomes and argue for the use of new approaches to overcome this issue. Finally, I explore the advantages and limitations of multivariate interaction models, when testing for interaction between multiple SNPs and/or multiple exposures, over univariate approaches. Together, these new insights can be leveraged for future method development and to improve our understanding of the genetic architecture of multifactorial traits.
引用
收藏
页码:678 / 688
页数:11
相关论文
共 53 条
[1]   Gene x Physical Activity Interactions in Obesity: Combined Analysis of 111,421 Individuals of European Ancestry [J].
Ahmad, Shafqat ;
Rukh, Gull ;
Varga, Tibor V. ;
Ali, Ashfaq ;
Kurbasic, Azra ;
Shungin, Dmitry ;
Ericson, Ulrika ;
Koivula, Robert W. ;
Chu, Audrey Y. ;
Rose, Lynda M. ;
Ganna, Andrea ;
Qi, Qibin ;
Stancakova, Alena ;
Sandholt, Camilla H. ;
Elks, Cathy E. ;
Curhan, Gary ;
Jensen, Majken K. ;
Tamimi, Rulla M. ;
Allin, Kristine H. ;
Jorgensen, Torben ;
Brage, Soren ;
Langenberg, Claudia ;
Aadahl, Mette ;
Grarup, Niels ;
Linneberg, Allan ;
Pare, Guillaume ;
Magnusson, Patrik K. E. ;
Pedersen, Nancy L. ;
Boehnke, Michael ;
Hamsten, Anders ;
Mohlke, Karen L. ;
Pasquale, Louis T. ;
Pedersen, Oluf ;
Scott, Robert A. ;
Ridker, Paul M. ;
Ingelsson, Erik ;
Laakso, Markku ;
Hansen, Torben ;
Qi, Lu ;
Wareham, Nicholas J. ;
Chasman, Daniel I. ;
Hallmans, Goran ;
Hu, Frank B. ;
Renstrom, Frida ;
Orho-Melander, Marju ;
Franks, Paul W. .
PLOS GENETICS, 2013, 9 (07)
[2]  
Aiken L.S., 1991, MULTIPLE REGRESSION
[3]  
Andersen PK, 2010, STAT BIOL HEALTH, P1, DOI 10.1007/978-1-4419-7170-8
[4]   Variation in Predictive Ability of Common Genetic Variants by Established Strata The Example of Breast Cancer and Age [J].
Aschard, Hugues ;
Zaitlen, Noah ;
Lindstrom, Sara ;
Kraft, Peter .
EPIDEMIOLOGY, 2015, 26 (01) :51-58
[5]   A Nonparametric Test to Detect Quantitative Trait Loci Where the Phenotypic Distribution Differs by Genotypes [J].
Aschard, Hugues ;
Zaitlen, Noah ;
Tamimi, Rulla M. ;
Lindstroem, Sara ;
Kraft, Peter .
GENETIC EPIDEMIOLOGY, 2013, 37 (04) :323-333
[6]   Challenges and opportunities in genome-wide environmental interaction (GWEI) studies [J].
Aschard, Hugues ;
Lutz, Sharon ;
Maus, Barbel ;
Duell, Eric J. ;
Fingerlin, Tasha E. ;
Chatterjee, Nilanjan ;
Kraft, Peter ;
Van Steen, Kristel .
HUMAN GENETICS, 2012, 131 (10) :1591-1613
[7]   Inclusion of Gene-Gene and Gene-Environment Interactions Unlikely to Dramatically Improve Risk Prediction for Complex Diseases [J].
Aschard, Hugues ;
Chen, Jinbo ;
Cornelis, Marilyn C. ;
Chibnik, Lori B. ;
Karlson, Elizabeth W. ;
Kraft, Peter .
AMERICAN JOURNAL OF HUMAN GENETICS, 2012, 90 (06) :962-972
[8]   Genome-Wide Meta-Analysis of Joint Tests for Genetic and Gene-Environment Interaction Effects [J].
Aschard, Hugues ;
Hancock, Dana B. ;
London, Stephanie J. ;
Kraft, Peter .
HUMAN HEREDITY, 2010, 70 (04) :292-300
[9]   Gene-Environment Interplay in Common Complex Diseases: Forging an Integrative Model-Recommendations From an NIH Workshop [J].
Bookman, Ebony B. ;
McAllister, Kimberly ;
Gillanders, Elizabeth ;
Wanke, Kay ;
Balshaw, David ;
Rutter, Joni ;
Reedy, Jill ;
Shaughnessy, Daniel ;
Agurs-Collins, Tanya ;
Paltoo, Dina ;
Atienza, Audie ;
Bierut, Laura ;
Kraft, Peter ;
Fallin, M. Daniele ;
Perera, Frederica ;
Turkheimer, Eric ;
Boardman, Jason ;
Marazita, Mary L. ;
Rappaport, Stephen M. ;
Boerwinkle, Eric ;
Suomi, Stephen J. ;
Caporaso, Neil E. ;
Hertz-Picciotto, Irva ;
Jacobson, Kristen C. ;
Lowe, William L. ;
Goldman, Lynn R. ;
Duggal, Priya ;
Gunnar, Megan R. ;
Manolio, Teri A. ;
Green, Eric D. ;
Olster, Deborah H. ;
Birnbaum, Linda S. .
GENETIC EPIDEMIOLOGY, 2011, 35 (04) :217-225
[10]   A geometric approach to compare variables in a regression model [J].
Bring, J .
AMERICAN STATISTICIAN, 1996, 50 (01) :57-62