A perspective on interaction effects in genetic association studies

被引:70
作者
Aschard, Hugues [1 ]
机构
[1] Harvard TH Sch Publ Hlth, Dept Epidemiol, Bldg 2,Room 249b,665 Huntington Ave, Boston, MA 02115 USA
关键词
genetic risk score; GWAS; interaction; joint test; multivariate analysis; power; pratt index; statistical method; variance explained; SUGAR-SWEETENED BEVERAGES; ENVIRONMENT INTERACTION; RELATIVE IMPORTANCE; VARIABLE IMPORTANCE; REGRESSION; RISK; METAANALYSIS; PREDICTORS; VARIANTS; DESIGNS;
D O I
10.1002/gepi.21989
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
The identification of gene-gene and gene-environment interaction in human traits and diseases is an active area of research that generates high expectation, and most often lead to high disappointment. This is partly explained by a misunderstanding of the inherent characteristics of standard regression-based interaction analyses. Here, I revisit and untangle major theoretical aspects of interaction tests in the special case of linear regression; in particular, I discuss variables coding scheme, interpretation of effect estimate, statistical power, and estimation of variance explained in regard of various hypothetical interaction patterns. Linking this components it appears first that the simplest biological interaction models-in which the magnitude of a genetic effect depends on a common exposure-are among the most difficult to identify. Second, I highlight the demerit of the current strategy to evaluate the contribution of interaction effects to the variance of quantitative outcomes and argue for the use of new approaches to overcome this issue. Finally, I explore the advantages and limitations of multivariate interaction models, when testing for interaction between multiple SNPs and/or multiple exposures, over univariate approaches. Together, these new insights can be leveraged for future method development and to improve our understanding of the genetic architecture of multifactorial traits.
引用
收藏
页码:678 / 688
页数:11
相关论文
共 53 条
  • [1] Gene x Physical Activity Interactions in Obesity: Combined Analysis of 111,421 Individuals of European Ancestry
    Ahmad, Shafqat
    Rukh, Gull
    Varga, Tibor V.
    Ali, Ashfaq
    Kurbasic, Azra
    Shungin, Dmitry
    Ericson, Ulrika
    Koivula, Robert W.
    Chu, Audrey Y.
    Rose, Lynda M.
    Ganna, Andrea
    Qi, Qibin
    Stancakova, Alena
    Sandholt, Camilla H.
    Elks, Cathy E.
    Curhan, Gary
    Jensen, Majken K.
    Tamimi, Rulla M.
    Allin, Kristine H.
    Jorgensen, Torben
    Brage, Soren
    Langenberg, Claudia
    Aadahl, Mette
    Grarup, Niels
    Linneberg, Allan
    Pare, Guillaume
    Magnusson, Patrik K. E.
    Pedersen, Nancy L.
    Boehnke, Michael
    Hamsten, Anders
    Mohlke, Karen L.
    Pasquale, Louis T.
    Pedersen, Oluf
    Scott, Robert A.
    Ridker, Paul M.
    Ingelsson, Erik
    Laakso, Markku
    Hansen, Torben
    Qi, Lu
    Wareham, Nicholas J.
    Chasman, Daniel I.
    Hallmans, Goran
    Hu, Frank B.
    Renstrom, Frida
    Orho-Melander, Marju
    Franks, Paul W.
    [J]. PLOS GENETICS, 2013, 9 (07):
  • [2] Aiken L.S., 1991, MULTIPLE REGRESSION
  • [3] Andersen PK, 2010, STAT BIOL HEALTH, P1, DOI 10.1007/978-1-4419-7170-8
  • [4] Variation in Predictive Ability of Common Genetic Variants by Established Strata The Example of Breast Cancer and Age
    Aschard, Hugues
    Zaitlen, Noah
    Lindstrom, Sara
    Kraft, Peter
    [J]. EPIDEMIOLOGY, 2015, 26 (01) : 51 - 58
  • [5] A Nonparametric Test to Detect Quantitative Trait Loci Where the Phenotypic Distribution Differs by Genotypes
    Aschard, Hugues
    Zaitlen, Noah
    Tamimi, Rulla M.
    Lindstroem, Sara
    Kraft, Peter
    [J]. GENETIC EPIDEMIOLOGY, 2013, 37 (04) : 323 - 333
  • [6] Challenges and opportunities in genome-wide environmental interaction (GWEI) studies
    Aschard, Hugues
    Lutz, Sharon
    Maus, Barbel
    Duell, Eric J.
    Fingerlin, Tasha E.
    Chatterjee, Nilanjan
    Kraft, Peter
    Van Steen, Kristel
    [J]. HUMAN GENETICS, 2012, 131 (10) : 1591 - 1613
  • [7] Inclusion of Gene-Gene and Gene-Environment Interactions Unlikely to Dramatically Improve Risk Prediction for Complex Diseases
    Aschard, Hugues
    Chen, Jinbo
    Cornelis, Marilyn C.
    Chibnik, Lori B.
    Karlson, Elizabeth W.
    Kraft, Peter
    [J]. AMERICAN JOURNAL OF HUMAN GENETICS, 2012, 90 (06) : 962 - 972
  • [8] Genome-Wide Meta-Analysis of Joint Tests for Genetic and Gene-Environment Interaction Effects
    Aschard, Hugues
    Hancock, Dana B.
    London, Stephanie J.
    Kraft, Peter
    [J]. HUMAN HEREDITY, 2010, 70 (04) : 292 - 300
  • [9] Gene-Environment Interplay in Common Complex Diseases: Forging an Integrative Model-Recommendations From an NIH Workshop
    Bookman, Ebony B.
    McAllister, Kimberly
    Gillanders, Elizabeth
    Wanke, Kay
    Balshaw, David
    Rutter, Joni
    Reedy, Jill
    Shaughnessy, Daniel
    Agurs-Collins, Tanya
    Paltoo, Dina
    Atienza, Audie
    Bierut, Laura
    Kraft, Peter
    Fallin, M. Daniele
    Perera, Frederica
    Turkheimer, Eric
    Boardman, Jason
    Marazita, Mary L.
    Rappaport, Stephen M.
    Boerwinkle, Eric
    Suomi, Stephen J.
    Caporaso, Neil E.
    Hertz-Picciotto, Irva
    Jacobson, Kristen C.
    Lowe, William L.
    Goldman, Lynn R.
    Duggal, Priya
    Gunnar, Megan R.
    Manolio, Teri A.
    Green, Eric D.
    Olster, Deborah H.
    Birnbaum, Linda S.
    [J]. GENETIC EPIDEMIOLOGY, 2011, 35 (04) : 217 - 225
  • [10] A geometric approach to compare variables in a regression model
    Bring, J
    [J]. AMERICAN STATISTICIAN, 1996, 50 (01) : 57 - 62