An algorithmic view of pseudochaos

被引:34
作者
Chirikov, BV
Vivaldi, F
机构
[1] Univ London Queen Mary & Westfield Coll, Sch Math Sci, London E1 4NS, England
[2] Budker Inst Nucl Phys, Novosibirsk 630090, Russia
来源
PHYSICA D | 1999年 / 129卷 / 3-4期
关键词
quantum chaos; pseudochaos; algorithmic complexity theory; ergodic theory;
D O I
10.1016/S0167-2789(98)00319-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The controversial concept of quantum chaos - the dynamical chaos in bounded mesoscopic quantum systems - is presented as the most important and universal instance of a new generic dynamical phenomenon: pseudochaos. The latter characterizes the irregular behaviour of dynamical systems with discrete energy and/or frequency spectrum, which include classical systems with discrete phase space. The question of randomness is addressed in terms of the algorithmic theory of dynamical systems, using the Arnold cat map for illustration. The relationship between the algorithmic theory and ergodic theory is discussed. (C) 1999 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:223 / 235
页数:13
相关论文
共 71 条
[1]  
ALEKSEEV VM, 1981, PHYS REP, V75, P287, DOI 10.1016/0370-1573(81)90186-1
[2]   Quantum chaos in terms of entropy for a periodically kicked top [J].
Alicki, R ;
Makowiec, D ;
Miklaszewski, W .
PHYSICAL REVIEW LETTERS, 1996, 77 (05) :838-841
[3]  
Arnold VI., 1968, Ergodic problems of classical mechanics
[4]   IDEAL ORBITS OF TORAL AUTOMORPHISMS [J].
BARTUCCELLI, M ;
VIVALDI, F .
PHYSICA D, 1989, 39 (2-3) :194-204
[5]   EFFECTS OF PHASE-SPACE DISCRETIZATION ON THE LONG-TIME BEHAVIOR OF DYNAMIC-SYSTEMS [J].
BECK, C ;
ROEPSTORFF, G .
PHYSICA D, 1987, 25 (1-3) :173-180
[6]   Periods of discretized linear Anosov maps [J].
Behrends, E ;
Fiedler, B .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1998, 18 :331-341
[7]   CONDITION OF STOCHASTICITY IN QUANTUM NON-LINEAR SYSTEMS [J].
BERMAN, GP ;
ZASLAVSKY, GM .
PHYSICA A, 1978, 91 (3-4) :450-460
[8]   QUANTUM MAPS [J].
BERRY, MV ;
BALAZS, NL ;
TABOR, M ;
VOROS, A .
ANNALS OF PHYSICS, 1979, 122 (01) :26-63
[9]  
Brudno A. A., 1982, Trudy Moskovskogo Matematicheskogo Obshchestva, V44, P124
[10]   DYNAMIC STABILITY OF QUANTUM CHAOTIC MOTION IN A HYDROGEN-ATOM [J].
CASATI, G ;
CHIRIKOV, BV ;
GUARNERI, I ;
SHEPELYANSKY, DL .
PHYSICAL REVIEW LETTERS, 1986, 56 (23) :2437-2440