Ime4qtl: linear mixed models with flexible covariance structure for genetic studies of related individuals

被引:105
作者
Ziyatdinov, Andrey [1 ]
Vazquez-Santiago, Miquel [2 ,3 ]
Brunel, Helena [2 ]
Martinez-Perez, Angel [2 ]
Aschard, Hugues [1 ,4 ]
Soria, Jose Manuel [2 ]
机构
[1] Harvard TH Chan Sch Publ Hlth, Dept Epidemiol, Boston, MA 02115 USA
[2] IIB St Pau, Unitat Genom Malalties Complexes, Barcelona, Spain
[3] Hosp Santa Creu & Sant Pau, Unitat Hemostasia & Trombosi, Barcelona, Spain
[4] Inst Pasteur, C3BI, Paris, France
来源
BMC BIOINFORMATICS | 2018年 / 19卷
关键词
Linear mixed models; Covariance; Related individuals; GWAS; Ime4; VARIANCE;
D O I
10.1186/s12859-018-2057-x
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Background: Quantitative trait locus (QTL) mapping in genetic data often involves analysis of correlated observations, which need to be accounted for to avoid false association signals. This is commonly performed by modeling such correlations as random effects in linear mixed models (LMMs). The R package lme4 is a well-established tool that implements major LMM features using sparse matrix methods; however, it is not fully adapted for QTL mapping association and linkage studies. In particular, two LMM features are lacking in the base version of lme4: the definition of random effects by custom covariance matrices; and parameter constraints, which are essential in advanced QTL models. Apart from applications in linkage studies of related individuals, such functionalities are of high interest for association studies in situations where multiple covariance matrices need to be modeled, a scenario not covered by many genome-wide association study (GWAS) software. Results: To address the aforementioned limitations, we developed a new R package lme4qtl as an extension of lme4. First, lme4qtl contributes new models for genetic studies within a single tool integrated with lme4 and its companion packages. Second, lme4qtl offers a flexible framework for scenarios with multiple levels of relatedness and becomes efficient when covariance matrices are sparse. We showed the value of our package using real family-based data in the Genetic Analysis of Idiopathic Thrombophilia 2 (GAIT2) project. Conclusions: Our software lme4qtl enables QTL mapping models with a versatile structure of random effects and efficient computation for sparse covariances.
引用
收藏
页数:5
相关论文
共 20 条
[1]   Multipoint quantitative-trait linkage analysis in general pedigrees [J].
Almasy, L ;
Blangero, J .
AMERICAN JOURNAL OF HUMAN GENETICS, 1998, 62 (05) :1198-1211
[2]   Fitting Linear Mixed-Effects Models Using lme4 [J].
Bates, Douglas ;
Maechler, Martin ;
Bolker, Benjamin M. ;
Walker, Steven C. .
JOURNAL OF STATISTICAL SOFTWARE, 2015, 67 (01) :1-48
[3]   Statistical Genetic Approaches to Human Adaptability [J].
Blangero, J. .
HUMAN BIOLOGY, 2009, 81 (5-6) :523-546
[4]   A Kernel of Truth: Statistical Advances in Polygenic Variance Component Models for Complex Human Pedigrees [J].
Blangero, John ;
Diego, Vincent P. ;
Dyer, Thomas D. ;
Almeida, Marcio ;
Peralta, Juan ;
Kent, Jack W., Jr. ;
Williams, Jeff T. ;
Almasy, Laura ;
Goering, Harald H. H. .
ADVANCES IN GENETICS, VOL 81, 2013, 81 :1-31
[5]  
Butler D. G., 2009, ASREML user guide release 3.0
[6]  
Harville D., 1990, Advances in statistical methods for genetic improvement of livestock.., P136
[7]   Efficient control of population structure in model organism association mapping [J].
Kang, Hyun Min ;
Zaitlen, Noah A. ;
Wade, Claire M. ;
Kirby, Andrew ;
Heckerman, David ;
Daly, Mark J. ;
Eskin, Eleazar .
GENETICS, 2008, 178 (03) :1709-1723
[8]   lmerTest Package: Tests in Linear Mixed Effects Models [J].
Kuznetsova, Alexandra ;
Brockhoff, Per B. ;
Christensen, Rune H. B. .
JOURNAL OF STATISTICAL SOFTWARE, 2017, 82 (13) :1-26
[9]  
Lippert C, 2011, NAT METHODS, V8, P833, DOI [10.1038/nmeth.1681, 10.1038/NMETH.1681]
[10]   Contrasting genetic architectures of schizophrenia and other complex diseases using fast variance-components analysis [J].
Loh, Po-Ru ;
Bhatia, Gaurav ;
Gusev, Alexander ;
Finucane, Hilary K. ;
Bulik-Sullivan, Brendan K. ;
Pollack, Samuela J. ;
de Candia, Teresa R. ;
Lee, Sang Hong ;
Wray, Naomi R. ;
Kendler, Kenneth S. ;
O'Donovan, Michael C. ;
Neale, Benjamin M. ;
Patterson, Nick ;
Price, Alkes L. .
NATURE GENETICS, 2015, 47 (12) :1385-+