Advanced Energy-Efficient Computation Offloading Using Deep Reinforcement Learning in MTC Edge Computing

被引:21
作者
Khan, Israr [1 ]
Tao, Xiaofeng [1 ]
Rahman, G. M. Shafiqur [2 ]
Rehman, Waheed Ur [1 ,3 ]
Salam, Tabinda [1 ,4 ]
机构
[1] Beijing Univ Posts & Telecommun, Natl Engn Lab Mobile Network Technol, Beijing 100876, Peoples R China
[2] Beijing Univ Posts & Telecommun, Key Lab Universal Wireless Commun, Minist Educ, Beijing 100876, Peoples R China
[3] Univ Peshawar, Dept Comp Sci, Peshawar 25120, Pakistan
[4] Shaheed Benazir Bhutto Women Univ, Dept Comp Sci, Peshawar 25000, Pakistan
基金
北京市自然科学基金; 中国国家自然科学基金;
关键词
Machine type communication; mobile edge computing; computation offloading; deep reinforcement learning; energy efficiency; RESOURCE-ALLOCATION; 5G; INTERNET; ARCHITECTURE; CHALLENGES; VEHICLES;
D O I
10.1109/ACCESS.2020.2991057
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Mobile edge computing (MEC) supports the internet of things (IoT) by leveraging computation offloading. It minimizes the delay and consequently reduces the energy consumption of the IoT devices. However, the consideration of static communication mode in most of the recent work, despite varying network dynamics and resource diversity, is the main limitation. An energy-efficient computation offloading method using deep reinforcement learning (DRL) is proposed. Both delay-tolerant and non-delay tolerant scenarios are considered using capillary machine type communication (MTC). Depending upon the type of service, an intelligent MTC edge server using DRL decides either process the incoming request at the MTC edge server or sends it to the cloud server. To control communication, we draft a markov decision problem (MDP). This minimizes the long-term power consumption of the system. The formulation of the optimization problem is considered under the constraint of computing power resources and delays. Simulation results delineate the significant performance gain of 12 & x0025; in computation offloading through the proposed DRL approach. The effectiveness and superiority of the proposed model are compared with other baselines and are demonstrated numerically.
引用
收藏
页码:82867 / 82875
页数:9
相关论文
共 33 条
  • [31] Yang T, 2018, 2018 15 INT S WIRELE, P1, DOI DOI 10.1109/ISWCS.2018.8491089
  • [32] On the Design of Computation Offloading in Fog Radio Access Networks
    Zhao, Zhongyuan
    Bu, Shuqing
    Zhao, Tiezhu
    Yin, Zhenping
    Peng, Mugen
    Ding, Zhiguo
    Quek, Tony Q. S.
    [J]. IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2019, 68 (07) : 7136 - 7149
  • [33] Caching Transient Data for Internet of Things: A Deep Reinforcement Learning Approach
    Zhu, Hao
    Cao, Yang
    Wei, Xiao
    Wang, Wei
    Jiang, Tao
    Jin, Shi
    [J]. IEEE INTERNET OF THINGS JOURNAL, 2019, 6 (02): : 2074 - 2083