Hydrogen in pipeline steels: Recent advances in characterization and embrittlement mitigation

被引:93
作者
Li, Hanyu [1 ,2 ]
Niu, Ranming [1 ,2 ]
Li, Wei [3 ]
Lu, Hongzhou [4 ]
Cairney, Julie [1 ,2 ]
Chen, Yi-Sheng [1 ,2 ,5 ]
机构
[1] Univ Sydney, Sch Aerosp Mech & Mechatron Engn, Sydney, NSW, Australia
[2] Univ Sydney, Australian Ctr Microscopy & Microanal, Sydney, NSW, Australia
[3] Shanghai Jiao Tong Univ, Sch Mat Sci & Engn, Shanghai, Peoples R China
[4] CITIC Met, Beijing, Peoples R China
[5] Natl Taiwan Univ, Dept Mat Sci & Engn, Taipei, Taiwan
基金
澳大利亚研究理事会;
关键词
Hydrogen embrittlement; Hydrogen energy; Pipeline steels; Hydrogen characterization; FATIGUE-CRACK GROWTH; THERMAL-DESORPTION SPECTROSCOPY; AUSTENITIC STAINLESS-STEELS; STRESS-CORROSION CRACKING; INDUCED DUCTILITY LOSS; HIGH-STRENGTH STEELS; HEAT-AFFECTED ZONE; LOW-CARBON STEEL; IN-SITU; HIGH-PRESSURE;
D O I
10.1016/j.jngse.2022.104709
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Hydrogen is a carbon-free fuel that can facilitate the progress of achieving net-zero emission. The use of the existing natural gas pipelines for hydrogen transport is an essential strategy to reduce the investment required for hydrogen distribution. However, gas transmission pipelines are generally comprised of steels that are susceptible to hydrogen embrittlement (HE). The failure of steel pipes can result in hydrogen leakage, which could lead to serious incidents. This review article aims to provide an overview of HE-related problems in pipeline steels, with specific emphasis on hydrogen behaviors, hydrogen embrittlement and related characterizations, and mitigation strategies.
引用
收藏
页数:20
相关论文
共 264 条
[1]   Hydrogen energy, economy and storage: Review and recommendation [J].
Abe, J. O. ;
Popoola, A. P. I. ;
Ajenifuja, E. ;
Popoola, O. M. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2019, 44 (29) :15072-15086
[2]   THE EFFECT OF MICROSTRUCTURE IN THE HYDROGEN EMBRITTLEMENT OF A GAS-PIPELINE STEEL [J].
ALP, T ;
DOGAN, B ;
DAVIES, TJ .
JOURNAL OF MATERIALS SCIENCE, 1987, 22 (06) :2105-2112
[3]   Hydrogen embrittlement susceptibility of a weld simulated X70 heat affected zone under H2 pressure [J].
Alvaro, A. ;
Olden, V. ;
Macadre, A. ;
Akselsen, Odd Magne .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2014, 597 :29-36
[4]   Influence of hydrogen pressure on fatigue properties of X80 pipeline steel [J].
An, Teng ;
Peng, Huangtao ;
Bai, Pengpeng ;
Zheng, Shuqi ;
Wen, Xiangli ;
Zhang, Lin .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2017, 42 (23) :15669-15678
[5]  
Ansi/Csa C., 2014, TEST METH EV MAT COM
[6]   A critical review of mathematical models used to determine the density of hydrogen trapping sites in steels and alloys [J].
Araujo, D. F. ;
Vilar, E. O. ;
Palma Carrasco, J. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2014, 39 (23) :12194-12200
[7]   Comparative study of embrittlement of quenched and tempered steels in hydrogen environments [J].
Arniella, V. ;
Zafra, A. ;
Belzunce, J. ;
Rodriguez, C. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2022, 47 (38) :17056-17068
[8]   Hydrogen trapping behavior in vanadium-added steel [J].
Asahi, H ;
Hirakami, D ;
Yamasaki, S .
ISIJ INTERNATIONAL, 2003, 43 (04) :527-533
[9]   OBSERVATION OF HYDROGEN TRAPPING IN FE-0.15WT-PERCENT TI ALLOY BY HIGH-RESOLUTION AUTORADIOGRAPHY [J].
ASAOKA, T ;
LAPASSET, G ;
AUCOUTURIER, M ;
LACOMBE, P .
CORROSION, 1978, 34 (02) :39-47
[10]   MAGNETIC-RELAXATION STUDIES OF MOTION OF HYDROGEN AND DEUTERIUM IN IRON [J].
AU, JJ ;
BIRNBAUM, HK .
ACTA METALLURGICA, 1978, 26 (07) :1105-1116