The Osteoblast to Osteocyte Transition: Epigenetic Changes and Response to the Vitamin D3 Hormone

被引:91
作者
St John, Hillary C. [1 ]
Bishop, Kathleen A. [1 ]
Meyer, Mark B. [1 ]
Benkusky, Nancy A. [1 ]
Leng, Ning [2 ]
Kendziorski, Christina [2 ]
Bonewald, Lynda F. [3 ]
Pike, J. Wesley [1 ]
机构
[1] Univ Wisconsin, Dept Biochem, Madison, WI 53706 USA
[2] Univ Wisconsin, Dept Biostat, Madison, WI 53706 USA
[3] Univ Missouri, Sch Dent, Dept Oral Biol, Kansas City, MO USA
关键词
KAPPA-B LIGAND; PARATHYROID-HORMONE; RECEPTOR ACTIVATOR; 1,25-DIHYDROXYVITAMIN D-3; GENE-EXPRESSION; BONE-FORMATION; TRANSCRIPTIONAL CONTROL; ENHANCER; DISTINCT; DIFFERENTIATION;
D O I
10.1210/me.2014-1091
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Osteocytes are derived from osteoblast lineage cells that become progressively embedded in mineralized bone. Development of the osteocytogenic cell line IDG-SW3 has enabled a temporal and mechanistic investigation of this process. Through RNA-sequencing analyses, we show that although substantial changes in gene expression occur during the osteoblast to osteocyte transition, the majority of the transcriptome remains qualitatively osteoblast like. Genes either upregulated or expressed uniquely in the osteocyte include local and systemic factors such as Sost and Fgf23 as well as genes implicated in neuronal, muscle, vascular, or regulatory function. As assessed by chromatin immunoprecipitation coupled to high-throughput sequencing, numerous changes in epigenetic histone modifications also occur during osteocytogenesis; these are largely qualitative rather than quantitative. Specific epigenetic changes correlate with altered gene expression patterns that are observed during the transition. These genomic changes likely influence the highly restricted transcriptomic response to 1,25(OH)(2)D-3 that occurs during differentiation. VDR binding in osteocytes revealed an extensive cistrome co-occupied by retinoid X receptor and located predominantly at sites distal to regulated genes. Although sites of VDR binding were apparent near many 1,25(OH)(2)D-3-regulated genes, the expression of others adjacent to VDR-binding sites were unaffected; lack of VDR binding was particularly prevalent at down-regulated genes. Interestingly, 1,25(OH)(2)D-3 was found to induce the Boc and Cdon coreceptors that are active in hedgehog signaling in osteocytes. We conclude that osteocytogenesis is accompanied by changes in gene expression that may be driven by both genetic and epigenetic components. These changes are likely responsible for the osteocyte phenotype and may contribute to reduced sensitivity to 1,25(OH)(2)D-3.
引用
收藏
页码:1150 / 1165
页数:16
相关论文
共 82 条
[1]   Differential expression analysis for sequence count data [J].
Anders, Simon ;
Huber, Wolfgang .
GENOME BIOLOGY, 2010, 11 (10)
[2]   High-resolution profiling of histone methylations in the human genome [J].
Barski, Artern ;
Cuddapah, Suresh ;
Cui, Kairong ;
Roh, Tae-Young ;
Schones, Dustin E. ;
Wang, Zhibin ;
Wei, Gang ;
Chepelev, Iouri ;
Zhao, Keji .
CELL, 2007, 129 (04) :823-837
[3]   1,25-dihydroxyvitamin D3/VDR-mediated induction of FGF23 as well as transcriptional control of other bone anabolic and catabolic genes that orchestrate the regulation of phosphate and calcium mineral metabolism [J].
Barthel, Thomas K. ;
Mathern, Douglas R. ;
Whitfield, G. Kerr ;
Haussler, Carol A. ;
Hopper, H. Andrew ;
Hsieh, Jui-Cheng ;
Slater, Stephanie A. ;
Hsieh, Grace ;
Kaczmarska, Magdalena ;
Jurutka, Peter W. ;
Kolek, Olga I. ;
Ghishan, Fayez K. ;
Haussler, Mark R. .
JOURNAL OF STEROID BIOCHEMISTRY AND MOLECULAR BIOLOGY, 2007, 103 (3-5) :381-388
[4]   Proteasomal degradation of Runx2 shortens parathyroid hormone-induced anti-apoptotic signaling in osteoblasts - A putative explanation for why intermittent administration is needed for bone anabolism [J].
Bellido, T ;
Ali, AA ;
Plotkin, LI ;
Fu, Q ;
Gubrij, I ;
Roberson, PK ;
Weinstein, RS ;
O'Brien, CA ;
Manolagas, SC ;
Jilka, RL .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (50) :50259-50272
[5]   Chronic elevation of parathyroid hormone in mice reduces expression of sclerostin by osteocytes: A novel mechanism for hormonal control of osteoblastogenesis [J].
Bellido, T ;
Ali, AA ;
Gubrij, I ;
Plotkin, LI ;
Fu, Q ;
O'Brien, CA ;
Manolagas, SC ;
Jilka, RL .
ENDOCRINOLOGY, 2005, 146 (11) :4577-4583
[6]   Effects of PTH on osteocyte function [J].
Bellido, Teresita ;
Saini, Vaibhav ;
Pajevic, Paola Divieti .
BONE, 2013, 54 (02) :250-257
[7]   The complex language of chromatin regulation during transcription [J].
Berger, Shelley L. .
NATURE, 2007, 447 (7143) :407-412
[8]   SOST/sclerostin, an osteocyte-derived negative regulator of bone formation [J].
Bezooijen, RL ;
ten Dijke, P ;
Papapoulos, SE ;
Löwik, CWGM .
CYTOKINE & GROWTH FACTOR REVIEWS, 2005, 16 (03) :319-327
[9]   Osteocytes, mechanosensing and Wnt signaling [J].
Bonewald, Lynda F. ;
Johnson, Mark L. .
BONE, 2008, 42 (04) :606-615
[10]   FGF23 production by osteocytes [J].
Bonewald, Lynda F. ;
Wacker, Michael J. .
PEDIATRIC NEPHROLOGY, 2013, 28 (04) :563-568