GOLDIE EXTENDING MODULES

被引:32
作者
Akalan, Evrim [2 ]
Birkenmeier, Gary F. [1 ]
Tercan, Adnan [2 ]
机构
[1] Univ Louisiana, Dept Math, Lafayette, LA 70504 USA
[2] Hacettepe Univ, Dept Math, Ankara, Turkey
关键词
C-11-module; C-11-ring; Extending module; FI-extending module; Rational hull; Uniform module; SUBMODULE;
D O I
10.1080/00927870802254843
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we de. ne a module M to be G-extending if and only if for each X <= M there exists a direct summand D of M such that X boolean AND D is essential in both X and D. We consider the decomposition theory for G-extending modules and give a characterization of the Abelian groups which are G-extending. In contrast to the characterization of extending Abelian groups, we obtain that all finitely generated Abelian groups are G-extending. We prove that a minimal cogenerator for Mod-R is G-extending, but not, in general, extending. It is also shown that if M is (G-) extending, then so is its rational hull. Examples are provided to illustrate and delimit the theory.
引用
收藏
页码:663 / 683
页数:21
相关论文
共 20 条
[1]  
Abulkheir H. E., 1996, KYUNGPOOK MATH J, V36, P129
[2]   When some complement of a submodule is a summand [J].
Birkenmeier, Gary F. ;
Tercan, Adnan .
COMMUNICATIONS IN ALGEBRA, 2007, 35 (02) :597-611
[3]   Modules in which every fully invariant submodule is essential in a direct summand [J].
Birkenmeier, GF ;
Müller, BJ ;
Rizvi, ST .
COMMUNICATIONS IN ALGEBRA, 2002, 30 (03) :1395-1415
[4]  
Dung N. V., 1994, PITMAN RES NOTES MAT, V313
[5]  
Fuchs L., 1970, INFINITE ABELIAN GRO, V1
[6]  
Fuchs L., 1973, Infinite Abelian Groups, VII
[7]  
Goldie A.W., 1960, Proc. Lond. Math. Soc., V10, P201
[8]  
GOODEARL K.R., 1976, RING THEORY NONSINGU
[9]  
KAMAL MA, 1988, OSAKA J MATH, V25, P531
[10]  
KAMAL MA, 1988, OSAKA J MATH, V25, P539