Spectral gaps of Affleck-Kennedy-Lieb-Tasaki Hamiltonians using tensor network methods

被引:29
作者
Garcia-Saez, Artur [1 ,2 ]
Murg, Valentin [3 ]
Wei, Tzu-Chieh [1 ,2 ]
机构
[1] SUNY Stony Brook, CN Yang Inst Theoret Phys, Stony Brook, NY 11794 USA
[2] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA
[3] Univ Vienna, Inst Theoret Phys, Vienna, Austria
基金
美国国家科学基金会;
关键词
BOND GROUND-STATES; QUANTUM ANTIFERROMAGNETS; RENORMALIZATION-GROUP; BOSE-CONDENSATION; SPIN CHAINS; COMPUTATION; MODELS; FIELDS;
D O I
10.1103/PhysRevB.88.245118
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Using exact diagonalization and tensor network techniques, we compute the gap for the Affleck-Kennedy-Lieb-Tasaki (AKLT) Hamiltonian in one and two spatial dimensions. Tensor network methods are used to extract physical properties directly in the thermodynamic limit, and we support these results using finite-size scalings from exact diagonalization. Studying the AKLT Hamiltonian perturbed by an external field, we show how to obtain an accurate value of the gap of the original AKLT Hamiltonian from the field value at which the ground state verifies e(0) < 0, which is a quantum critical point. With the tensor network renormalization group methods we provide direct evidence of a finite gap in the thermodynamic limit for the AKLT models in the one-dimensional chain and two-dimensional hexagonal and square lattices. This method can be applied generally to Hamiltonians with rotational symmetry, and we also show results beyond the AKLT model.
引用
收藏
页数:9
相关论文
共 42 条
[31]   LARGE-SCALE NUMERICAL EVIDENCE FOR BOSE-CONDENSATION IN THE S = 1 ANTIFERROMAGNETIC CHAIN IN A STRONG-FIELD [J].
SORENSEN, ES ;
AFFLECK, I .
PHYSICAL REVIEW LETTERS, 1993, 71 (10) :1633-1636
[32]   Scaling of entanglement support for matrix product states [J].
Tagliacozzo, L. ;
de Oliveira, Thiago. R. ;
Iblisdir, S. ;
Latorre, J. I. .
PHYSICAL REVIEW B, 2008, 78 (02)
[33]   Matrix product states, projected entangled pair states, and variational renormalization group methods for quantum spin systems [J].
Verstraete, F. ;
Murg, V. ;
Cirac, J. I. .
ADVANCES IN PHYSICS, 2008, 57 (02) :143-224
[34]   Classical simulation of infinite-size quantum lattice systems in one spatial dimension [J].
Vidal, G. .
PHYSICAL REVIEW LETTERS, 2007, 98 (07)
[35]   Two-dimensional Affleck-Kennedy-Lieb-Tasaki state on the honeycomb lattice is a universal resource for quantum computation [J].
Wei, Tzu-Chieh ;
Affleck, Ian ;
Raussendorf, Robert .
PHYSICAL REVIEW A, 2012, 86 (03)
[36]   Affleck-Kennedy-Lieb-Tasaki State on a Honeycomb Lattice is a Universal Quantum Computational Resource [J].
Wei, Tzu-Chieh ;
Affleck, Ian ;
Raussendorf, Robert .
PHYSICAL REVIEW LETTERS, 2011, 106 (07)
[37]  
Wen X.G., 2004, Quantum Field Theory of Many-Body Systems: From the Origin of Sound to an Origin of Light and Electrons
[38]   EFFICIENT MPS ALGORITHM FOR PERIODIC BOUNDARY CONDITIONS AND APPLICATIONS [J].
Weyrauch, M. ;
Rakov, M. V. .
UKRAINIAN JOURNAL OF PHYSICS, 2013, 58 (07) :657-665
[39]   NUMERICAL RENORMALIZATION-GROUP STUDY OF LOW-LYING EIGENSTATES OF THE ANTIFERROMAGNETIC S = 1 HEISENBERG CHAIN [J].
WHITE, SR ;
HUSE, DA .
PHYSICAL REVIEW B, 1993, 48 (06) :3844-3852
[40]   Coarse-graining renormalization by higher-order singular value decomposition [J].
Xie, Z. Y. ;
Chen, J. ;
Qin, M. P. ;
Zhu, J. W. ;
Yang, L. P. ;
Xiang, T. .
PHYSICAL REVIEW B, 2012, 86 (04)