Spectral gaps of Affleck-Kennedy-Lieb-Tasaki Hamiltonians using tensor network methods

被引:29
作者
Garcia-Saez, Artur [1 ,2 ]
Murg, Valentin [3 ]
Wei, Tzu-Chieh [1 ,2 ]
机构
[1] SUNY Stony Brook, CN Yang Inst Theoret Phys, Stony Brook, NY 11794 USA
[2] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA
[3] Univ Vienna, Inst Theoret Phys, Vienna, Austria
基金
美国国家科学基金会;
关键词
BOND GROUND-STATES; QUANTUM ANTIFERROMAGNETS; RENORMALIZATION-GROUP; BOSE-CONDENSATION; SPIN CHAINS; COMPUTATION; MODELS; FIELDS;
D O I
10.1103/PhysRevB.88.245118
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Using exact diagonalization and tensor network techniques, we compute the gap for the Affleck-Kennedy-Lieb-Tasaki (AKLT) Hamiltonian in one and two spatial dimensions. Tensor network methods are used to extract physical properties directly in the thermodynamic limit, and we support these results using finite-size scalings from exact diagonalization. Studying the AKLT Hamiltonian perturbed by an external field, we show how to obtain an accurate value of the gap of the original AKLT Hamiltonian from the field value at which the ground state verifies e(0) < 0, which is a quantum critical point. With the tensor network renormalization group methods we provide direct evidence of a finite gap in the thermodynamic limit for the AKLT models in the one-dimensional chain and two-dimensional hexagonal and square lattices. This method can be applied generally to Hamiltonians with rotational symmetry, and we also show results beyond the AKLT model.
引用
收藏
页数:9
相关论文
共 42 条
[1]   THEORY OF HALDANE-GAP ANTIFERROMAGNETS IN APPLIED FIELDS [J].
AFFLECK, I .
PHYSICAL REVIEW B, 1990, 41 (10) :6697-6702
[2]   RIGOROUS RESULTS ON VALENCE-BOND GROUND-STATES IN ANTIFERROMAGNETS [J].
AFFLECK, I ;
KENNEDY, T ;
LIEB, EH ;
TASAKI, H .
PHYSICAL REVIEW LETTERS, 1987, 59 (07) :799-802
[3]   VALENCE BOND GROUND-STATES IN ISOTROPIC QUANTUM ANTIFERROMAGNETS [J].
AFFLECK, I ;
KENNEDY, T ;
LIEB, EH ;
TASAKI, H .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1988, 115 (03) :477-528
[4]   BOSE CONDENSATION IN QUASI-ONE-DIMENSIONAL ANTIFERROMAGNETS IN STRONG FIELDS [J].
AFFLECK, I .
PHYSICAL REVIEW B, 1991, 43 (04) :3215-3222
[5]   EXTENDED HEISENBERG MODELS OF ANTIFERROMAGNETISM - ANALOGIES TO THE FRACTIONAL QUANTUM HALL-EFFECT [J].
AROVAS, DP ;
AUERBACH, A ;
HALDANE, FDM .
PHYSICAL REVIEW LETTERS, 1988, 60 (06) :531-534
[6]  
Auerbach A., 1998, INTERACTING ELECT QU
[7]   Measurement-based quantum computer in the gapped ground state of a two-body Hamiltonian [J].
Brennen, Gavin K. ;
Miyake, Akimasa .
PHYSICAL REVIEW LETTERS, 2008, 101 (01)
[8]  
Briegel HJ, 2009, NAT PHYS, V5, P19, DOI [10.1038/NPHYS1157, 10.1038/nphys1157]
[9]  
Capponi S., COMMUNICATION
[10]   FINITELY CORRELATED STATES ON QUANTUM SPIN CHAINS [J].
FANNES, M ;
NACHTERGAELE, B ;
WERNER, RF .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1992, 144 (03) :443-490