A Modified Groundwater Flow Model Using the Space Time Riemann-Liouville Fractional Derivatives Approximation

被引:1
作者
Atangana, Abdon [1 ]
Noutchie, S. C. Oukouomi [2 ]
机构
[1] Univ Free State, Fac Nat & Agr Sci, Inst Groundwater Studies, ZA-9300 Bloemfontein, South Africa
[2] North West Univ, Dept Math Sci, ZA-2735 Mmabatho, South Africa
关键词
DIFFERENTIAL-EQUATIONS; ANOMALOUS DIFFUSION;
D O I
10.1155/2014/498381
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The notion of uncertainty in groundwater hydrology is of great importance as it is known to result in misleading output when neglected or not properly accounted for. In this paper we examine this effect in groundwater flow models. To achieve this, we first introduce the uncertainties functions u as function of time and space. The function u accounts for the lack of knowledge or variability of the geological formations in which flow occur (aquifer) in time and space. We next make use of Riemann-Liouville fractional derivatives that were introduced by Kobelev and Romano in 2000 and its approximation to modify the standard version of groundwater flow equation. Some properties of the modified Riemann-Liouville fractional derivative approximation are presented. The classical model for groundwater flow, in the case of density-independent flow in a uniform homogeneous aquifer is reformulated by replacing the classical derivative by the Riemann-Liouville fractional derivatives approximations. The modified equation is solved via the technique of green function and the variational iteration method.
引用
收藏
页数:7
相关论文
共 21 条