Magnetic-like field inducing negative Dirac mass in graphene on hexagonal boron nitride

被引:3
作者
Soodchomshom, Bumned [1 ,2 ]
Tang, I-Ming [2 ,3 ]
Hoonsawat, Rassmidara [2 ]
机构
[1] Kasetsart Univ, Fac Sci, Dept Phys, Bangkok 10900, Thailand
[2] Minist Educ, Commiss Higher Educ, Thailand Ctr Excellence Phys, Bangkok 10400, Thailand
[3] Kasetsart Univ, Fac Sci, Dept Mat Sci, Div Nanomat Sci, Bangkok, Thailand
关键词
Graphene; Hexagonal boron nitride; Spin transverse force; Larmor precession; TRANSPORT;
D O I
10.1016/j.physe.2013.03.013
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The tight-binding electrons in graphene grown on top of hexagonal boron nitride (h-BN) substrate are studied. The two types of surfaces on the h-BN substrate give rise to Dirac fermions having positive and negative masses. The positive and negative masses of the Dirac fermions lead to the gapped graphene to behave as a "pseudo" ferromagnet. A very large (pseudo) tunneling magnetoresistance is predicted when the Fermi level approaches the gap region. The energy gap due to the breaking of sublattice symmetry in graphene on h-BN substrate is analogous to magnetic-induced energy gap on surface of topological insulators. We point out that positive and negative masses may correspond to signs of magnetic-like field perpendicular to graphene sheet acting on pseudo magnetic dipole moment of electrons, leading to pseudo-Larmor precession and Stern-Gerlach magnetic force. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:70 / 76
页数:7
相关论文
共 29 条
  • [11] Magnetotransport of Dirac fermions on the surface of a topological insulator
    Mondal, S.
    Sen, D.
    Sengupta, K.
    Shankar, R.
    [J]. PHYSICAL REVIEW B, 2010, 82 (04)
  • [12] Electric field effect in atomically thin carbon films
    Novoselov, KS
    Geim, AK
    Morozov, SV
    Jiang, D
    Zhang, Y
    Dubonos, SV
    Grigorieva, IV
    Firsov, AA
    [J]. SCIENCE, 2004, 306 (5696) : 666 - 669
  • [13] Strain Engineering of Graphene's Electronic Structure
    Pereira, Vitor M.
    Castro Neto, A. H.
    [J]. PHYSICAL REVIEW LETTERS, 2009, 103 (04)
  • [14] Colloquium: The transport properties of graphene: An introduction
    Peres, N. M. R.
    [J]. REVIEWS OF MODERN PHYSICS, 2010, 82 (03) : 2673 - 2700
  • [15] Topological insulators and superconductors
    Qi, Xiao-Liang
    Zhang, Shou-Cheng
    [J]. REVIEWS OF MODERN PHYSICS, 2011, 83 (04)
  • [16] Inducing energy gaps in monolayer and bilayer graphene: Local density approximation calculations
    Ribeiro, R. M.
    Peres, N. M. R.
    Coutinho, J.
    Briddon, P. R.
    [J]. PHYSICAL REVIEW B, 2008, 78 (07)
  • [17] In-plane magnetoresistance on the surface of topological insulator
    Salehi, Morteza
    Alidoust, Mohammad
    Rahnavard, Yousef
    Rashedi, Gholamreza
    [J]. PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2011, 43 (04) : 966 - 970
  • [18] Valley-dependent tunneling in a monolayer gapped graphene without strain
    Soodchomshom, Bumned
    [J]. PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2012, 44 (7-8) : 1617 - 1622
  • [19] Magneto transport on the surface of a topological insulator spin valve
    Soodchomshom, Bumned
    [J]. PHYSICS LETTERS A, 2010, 374 (28) : 2894 - 2899
  • [20] Evidence for Klein Tunneling in Graphene p-n Junctions
    Stander, N.
    Huard, B.
    Goldhaber-Gordon, D.
    [J]. PHYSICAL REVIEW LETTERS, 2009, 102 (02)