Magnetic-like field inducing negative Dirac mass in graphene on hexagonal boron nitride

被引:3
作者
Soodchomshom, Bumned [1 ,2 ]
Tang, I-Ming [2 ,3 ]
Hoonsawat, Rassmidara [2 ]
机构
[1] Kasetsart Univ, Fac Sci, Dept Phys, Bangkok 10900, Thailand
[2] Minist Educ, Commiss Higher Educ, Thailand Ctr Excellence Phys, Bangkok 10400, Thailand
[3] Kasetsart Univ, Fac Sci, Dept Mat Sci, Div Nanomat Sci, Bangkok, Thailand
关键词
Graphene; Hexagonal boron nitride; Spin transverse force; Larmor precession; TRANSPORT;
D O I
10.1016/j.physe.2013.03.013
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The tight-binding electrons in graphene grown on top of hexagonal boron nitride (h-BN) substrate are studied. The two types of surfaces on the h-BN substrate give rise to Dirac fermions having positive and negative masses. The positive and negative masses of the Dirac fermions lead to the gapped graphene to behave as a "pseudo" ferromagnet. A very large (pseudo) tunneling magnetoresistance is predicted when the Fermi level approaches the gap region. The energy gap due to the breaking of sublattice symmetry in graphene on h-BN substrate is analogous to magnetic-induced energy gap on surface of topological insulators. We point out that positive and negative masses may correspond to signs of magnetic-like field perpendicular to graphene sheet acting on pseudo magnetic dipole moment of electrons, leading to pseudo-Larmor precession and Stern-Gerlach magnetic force. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:70 / 76
页数:7
相关论文
共 29 条
  • [1] Tunneling spectroscopy of graphene-boron-nitride heterostructures
    Amet, F.
    Williams, J. R.
    Garcia, A. G. F.
    Yankowitz, M.
    Watanabe, K.
    Taniguchi, T.
    Goldhaber-Gordon, D.
    [J]. PHYSICAL REVIEW B, 2012, 85 (07)
  • [2] Colloquium: Andreev reflection and Klein tunneling in graphene
    Beenakker, C. W. J.
    [J]. REVIEWS OF MODERN PHYSICS, 2008, 80 (04) : 1337 - 1354
  • [3] Ci L, 2010, NAT MATER, V9, P430, DOI [10.1038/nmat2711, 10.1038/NMAT2711]
  • [4] Boron nitride substrates for high-quality graphene electronics
    Dean, C. R.
    Young, A. F.
    Meric, I.
    Lee, C.
    Wang, L.
    Sorgenfrei, S.
    Watanabe, K.
    Taniguchi, T.
    Kim, P.
    Shepard, K. L.
    Hone, J.
    [J]. NATURE NANOTECHNOLOGY, 2010, 5 (10) : 722 - 726
  • [5] Valley filter in strain engineered graphene
    Fujita, T.
    Jalil, M. B. A.
    Tan, S. G.
    [J]. APPLIED PHYSICS LETTERS, 2010, 97 (04)
  • [6] Giovannetti G, 2007, PHYS REV B, V76, DOI 10.1103/PhysRevB.76.073103
  • [7] Conductance of p-n-p structures with "Air-Bridge" top gates
    Gorbachev, Roman V.
    Mayorov, Alexander S.
    Savchenko, Alexander K.
    Horsell, David W.
    Guinea, Francisco
    [J]. NANO LETTERS, 2008, 8 (07) : 1995 - 1999
  • [8] The reflection of electrons at a potential jump to the relative dynamics of Dirac
    Klein, O.
    [J]. ZEITSCHRIFT FUR PHYSIK, 1929, 53 (3-4): : 157 - 165
  • [10] Pseudospin polarized quantum transport in monolayer graphene
    Majidi, Leyla
    Zareyan, Malek
    [J]. PHYSICAL REVIEW B, 2011, 83 (11)