HDPE-clay nanocomposite foams blown with supercritical CO2

被引:60
作者
Lee, Yoon Hwan
Park, Chul B. [1 ]
Wang, Ki Hyun
Lee, Min Hee
机构
[1] Univ Toronto, Dept Mech & Ind Engn, Microcellular Plast Mfg Lab, Toronto, ON M5S 3G8, Canada
[2] LG Chem Res Pk, Taejon 305380, South Korea
关键词
nanocomposites; batch foaming; clay; HDPE;
D O I
10.1177/0021955X05056964
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
To investigate the effect of clay particles on the cell morphology of HDPE-clay nanocomposite foams, research on the batch foaming process of HDPE-clay nanocomposites using supercritical. CO2 is conducted. This study demonstrates that in comparison with pure HDPE, nanocomposites produce much finer and more uniform cell structures. Additionally, an attempt to produce a nanocellular structure is successfully performed using HDPE-clay nanocomposites.
引用
收藏
页码:487 / 502
页数:16
相关论文
共 50 条
[31]   Supercritical CO2-Ionic Liquids: A Successful Wedding To Prepare Biopolymer Foams [J].
Livi, Sebastien ;
Lins, Luanda C. ;
Sar, Gabriela ;
Gerard, Jean-Francois ;
Duchet-Rumeau, Jannick .
ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2016, 4 (02) :461-470
[32]   Transition from microcellular to nanocellular chain extended poly(lactic acid)/hydroxyl-functionalized graphene foams by supercritical CO2 [J].
Xianzeng Wang ;
Jianguo Mi ;
Hongfu Zhou ;
Xiangdong Wang .
Journal of Materials Science, 2019, 54 :3863-3877
[33]   Preparation of Fast-Degrading Poly(Lactic Acid)/Soy Protein Concentrate Biocomposite Foams via Supercritical CO2 Foaming [J].
Liu, Tong ;
Peng, Xiang-Fang ;
Mi, Hao-Yang ;
Li, Heng ;
Turng, Lih-Sheng ;
Xu, Bai-Ping .
POLYMER ENGINEERING AND SCIENCE, 2019, 59 (09) :1753-1762
[34]   Porous poly(L-lactic acid) nanocomposite scaffolds prepared by phase inversion using supercritical CO2 as antisolvent [J].
Tsivintzelis, Ioannis ;
Marras, Sofirios I. ;
Zuburtikudis, Ioannis ;
Panayiotou, Costas .
POLYMER, 2007, 48 (21) :6311-6318
[35]   Supercritical CO2 assisted synthesis of highly selective nafion-zeolite nanocomposite membranes for direct methanol fuel cells [J].
Gribov, Evgueni N. ;
Parkhomchuk, Ekaterina V. ;
Krivobokov, Ivan M. ;
Darr, Jawwad A. ;
Okunev, Alexey G. .
JOURNAL OF MEMBRANE SCIENCE, 2007, 297 (1-2) :1-4
[36]   Microcellular natural rubber using supercritical CO2 technology [J].
Tessanan, W. ;
Phinyocheep, P. ;
Daniel, P. ;
Gibaud, A. .
JOURNAL OF SUPERCRITICAL FLUIDS, 2019, 149 :70-78
[37]   Co-utilisation of alkaline solid waste and compressed-or-supercritical CO2 to produce calcite and calcite/Se0 red nanocomposite [J].
Montes-Hernandez, G. ;
Renard, F. .
JOURNAL OF SUPERCRITICAL FLUIDS, 2011, 56 (01) :48-55
[38]   Clay honeycomb monoliths as low cost CO2 adsorbents [J].
Yeste, M. P. ;
Gatica, J. M. ;
Ahrouch, M. ;
Vidal, H. .
JOURNAL OF THE TAIWAN INSTITUTE OF CHEMICAL ENGINEERS, 2017, 80 :415-423
[39]   Synthesis and characterization of polypyrrole-TiO2 nanocomposites in supercritical CO2 [J].
Yuvaraj, Haldorai ;
Park, Eun Ju ;
Gal, Yeong-Soon ;
Lim, Kwon Taek .
COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2008, 313 :300-303
[40]   Synthesis of polymer-inorganic filler nanocomposites in supercritical CO2 [J].
Haldorai, Yuvaraj ;
Shim, Jae-Jin ;
Lim, Kwon Taek .
JOURNAL OF SUPERCRITICAL FLUIDS, 2012, 71 :45-63