Stretchable fabric generates electric power from woven thermoelectric fibers

被引:322
作者
Sun, Tingting [1 ]
Zhou, Beiying [1 ,2 ]
Zheng, Qi [1 ]
Wang, Lianjun [1 ]
Jiang, Wan [1 ,2 ]
Snyder, Gerald Jeffrey [3 ]
机构
[1] Donghua Univ, Coll Mat Sci & Engn, State Key Lab Modificat Chem Fibers & Polymer Mat, Shanghai, Peoples R China
[2] Donghua Univ, Engn Res Ctr Adv Glasses Mfg Technol, Minist Educ, Shanghai, Peoples R China
[3] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA
关键词
CARBON NANOTUBES; HIGH-PERFORMANCE; COMPOSITES; MODULES; COMPLEX;
D O I
10.1038/s41467-020-14399-6
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Assembling thermoelectric modules into fabric to harvest energy from body heat could one day power multitudinous wearable electronics. However, the invalid 2D architecture of fabric limits the application in thermoelectrics. Here, we make the valid thermoelectric fabric woven out of thermoelectric fibers producing an unobtrusive working thermoelectric module. Alternately doped carbon nanotube fibers wrapped with acrylic fibers are woven into p-type thermoelectric modules. Utilizing elasticity originating from interlocked thermoelectric modules, stretchable 3D thermoelectric generators without substrate can be made to enable sufficient alignment with the heat flow direction. The textile generator shows a peak power density of 70mWm(-2) for a temperature difference of 44 K and excellent stretchability (similar to 80% strain) with no output degradation. The compatibility between body movement and sustained power supply is further displayed. The generators described here are true textiles, proving active thermoelectrics can be woven into various fabric architectures for sensing, energy harvesting, or thermal management.
引用
收藏
页数:10
相关论文
共 49 条
[1]   Cooling, heating, generating power, and recovering waste heat with thermoelectric systems [J].
Bell, Lon E. .
SCIENCE, 2008, 321 (5895) :1457-1461
[2]   Is the intrinsic thermoelectric power of carbon nanotubes positive? [J].
Bradley, K ;
Jhi, SH ;
Collins, PG ;
Hone, J ;
Cohen, ML ;
Louie, SG ;
Zettl, A .
PHYSICAL REVIEW LETTERS, 2000, 85 (20) :4361-4364
[3]  
Bubnova O, 2011, NAT MATER, V10, P429, DOI [10.1038/NMAT3012, 10.1038/nmat3012]
[4]   Flexible and Robust Thermoelectric Generators Based on All-Carbon Nanotube Yarn without Metal Electrodes [J].
Choi, Jaeyoo ;
Jung, Yeonsu ;
Yang, Seung Jae ;
Oh, Jun Young ;
Oh, Jinwoo ;
Jo, Kiyoung ;
Son, Jeong Gon ;
Moon, Seung Eon ;
Park, Chong Rae ;
Kim, Heesuk .
ACS NANO, 2017, 11 (08) :7608-7614
[5]   High-Performance Thermoelectric Paper Based on Double Carrier-Filtering Processes at Nanowire Heterojunctions [J].
Choi, Jaeyoo ;
Lee, Jang Yeol ;
Lee, Sang-Soo ;
Park, Chong Rae ;
Kim, Heesuk .
ADVANCED ENERGY MATERIALS, 2016, 6 (09)
[6]   Extreme oxygen sensitivity of electronic properties of carbon nanotubes [J].
Collins, PG ;
Bradley, K ;
Ishigami, M ;
Zettl, A .
SCIENCE, 2000, 287 (5459) :1801-1804
[7]   High performance n-type Ag2Se film on nylon membrane for flexible thermoelectric power generator [J].
Ding, Yufei ;
Qiu, Yang ;
Cai, Kefeng ;
Yao, Qin ;
Chen, Song ;
Chen, Lidong ;
He, Jiaqing .
NATURE COMMUNICATIONS, 2019, 10
[8]   Organic thermoelectric devices based on a stable n-type nanocomposite printed on paper [J].
Ferhat, Salim ;
Domain, Christophe ;
Vidal, Julien ;
Noel, Didier ;
Ratier, Bernard ;
Lucas, Bruno .
SUSTAINABLE ENERGY & FUELS, 2018, 2 (01) :199-208
[9]   PDMS/Kapton Interface Plasma Treatment Effects on the Polymeric Package for a Wearable Thermoelectric Generator [J].
Francioso, Luca ;
De Pascali, Chiara ;
Bartali, Ruben ;
Morganti, Elisa ;
Lorenzelli, Leandro ;
Siciliano, Pietro ;
Laidani, Nadhira .
ACS APPLIED MATERIALS & INTERFACES, 2013, 5 (14) :6586-6590
[10]   Multilayered Carbon Nanotube/Polymer Composite Based Thermoelectric Fabrics [J].
Hewitt, Corey A. ;
Kaiser, Alan B. ;
Roth, Siegmar ;
Craps, Matt ;
Czerw, Richard ;
Carroll, David L. .
NANO LETTERS, 2012, 12 (03) :1307-1310