Cramer's rule over residue class rings of Bezout domains

被引:1
作者
Wu, Yali [1 ]
Yang, Yichuan [1 ]
机构
[1] Beihang Univ, Sch Math & Syst Sci, Beijing, Peoples R China
关键词
Cramer's rule; Bezoutdomain; residue class ring; COMMUTATIVE SEMIRINGS; MATRICES;
D O I
10.1080/03081087.2017.1348461
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Cramer's rule over residue class rings of Bezout domains is given.
引用
收藏
页码:1268 / 1276
页数:9
相关论文
共 14 条
[1]   INTEGRALLY CLOSED CONDENSED DOMAINS ARE BEZOUT [J].
ANDERSON, DF ;
ARNOLD, JT ;
DOBBS, DE .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1985, 28 (01) :98-102
[2]  
Brown W. C., 1993, MATRICES COMMUTATIVE
[3]  
Chapman S., 2000, NON NOETHERIAN COMMU, V520
[4]   UNIQUE FACTORIZATION DOMAINS [J].
COHN, PM .
AMERICAN MATHEMATICAL MONTHLY, 1973, 80 (01) :1-18
[5]  
COHN PM, 1968, PROC CAMB PHILOS S-M, V64, P251
[6]  
Durbin J.R., 2009, MODERN ALGEBRA INTRO
[7]   POLE PLACEMENT FOR LINEAR-SYSTEMS OVER BEZOUT DOMAINS [J].
EMRE, E ;
KHARGONEKAR, PP .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1984, 29 (01) :90-91
[8]  
Felix Lazebnik, 1996, Math Mag, V69, P261
[9]   Invertible incline matrices and Cramer's rule over inclines [J].
Han, SC ;
Li, HX .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2004, 389 :121-138
[10]   ELEMENTARY DIVISORS AND MODULES [J].
KAPLANSKY, I .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1949, 66 (JUL-) :464-491