Quasi-periodic waves and an asymptotic property for the asymmetrical Nizhnik-Novikov-Veselov equation

被引:124
作者
Fan, Engui [1 ,2 ]
机构
[1] Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
[2] Fudan Univ, Key Lab Math Nonlinear Sci, Shanghai 200433, Peoples R China
关键词
LINEAR EVOLUTION-EQUATIONS; N-SOLITON SOLUTIONS; KDV EQUATION; BACKLUND TRANSFORMATION; SYSTEM;
D O I
10.1088/1751-8113/42/9/095206
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Based on a multi-dimensional Riemann theta function, the Hirota bilinear method is extended to explicitly construct multi-periodic (quasi-periodic) wave solutions for the asymmetrical Nizhnik-Novikov-Veselov equation. Among these periodic waves, two-periodic waves are a direct generalization of well-known cnoidal waves; their surface pattern is two dimensional. The main physical result is the description of the behavior of nonlinear waves in shallow water. A limiting procedure is presented to analyze asymptotic properties of the two-periodic waves in details. Relations between the periodic wave solutions and the well-known soliton solutions are established. It is rigorously shown that the periodic wave solutions tend to the soliton solutions under a 'small amplitude' limit.
引用
收藏
页数:11
相关论文
共 21 条
[1]   ON THE SPECTRAL TRANSFORM OF A KORTEWEG-DEVRIES EQUATION IN 2 SPATIAL DIMENSIONS [J].
BOITI, M ;
LEON, JJP ;
MANNA, M ;
PEMPINELLI, F .
INVERSE PROBLEMS, 1986, 2 (03) :271-279
[2]   New exact solutions of the (2+1)-dimensional asymmetric Nizhnik-Novikov-Veselov system [J].
Dai, Chao-Qing ;
Wu, Sheng-Sheng ;
Cen, Xu .
INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2008, 47 (05) :1286-1293
[3]   Novel types of interactions between solitons in the (2+1)-dimensional asymmetric Nizhnik-Novikov-Veselov system [J].
Dai, Chaoqing ;
Liu, Fengqin ;
Zhang, Jiefang .
CHAOS SOLITONS & FRACTALS, 2008, 36 (02) :437-445
[4]   A WAVE-EQUATION IN 2+1 - PAINLEVE ANALYSIS AND SOLUTIONS [J].
ESTEVEZ, PG ;
LEBLE, S .
INVERSE PROBLEMS, 1995, 11 (04) :925-937
[5]   NONLINEAR EVOLUTION EQUATIONS GENERATED FROM BACKLUND TRANSFORMATION FOR BOUSSINESQ EQUATION [J].
HIROTA, R ;
SATSUMA, J .
PROGRESS OF THEORETICAL PHYSICS, 1977, 57 (03) :797-807
[6]   HIERARCHIES OF COUPLED SOLITON-EQUATIONS .1. [J].
HIROTA, R ;
OHTA, Y .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1991, 60 (03) :798-809
[7]  
Hirota R., 2004, DIRECT METHODS SOLIT
[8]   A kind of explicit quasi-periodic solution and its limit for the Toda lattice equation [J].
Hon, Y. C. ;
Fan, Engui ;
Qin, Zhenyun .
MODERN PHYSICS LETTERS B, 2008, 22 (08) :547-553
[9]   Variable separation solutions obtained from Darboux transformations for the asymmetric Nizhnik-Novikov-Veselov system [J].
Hu, HC ;
Tang, XY ;
Lou, SY ;
Liu, QP .
CHAOS SOLITONS & FRACTALS, 2004, 22 (02) :327-334
[10]   An integrable symmetric (2+1)-dimensional Lotka-Volterra equation and a family of its solutions [J].
Hu, XB ;
Li, CX ;
Nimmo, JJC ;
Yu, GF .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (01) :195-204