The odd Littlewood-Richardson rule

被引:4
|
作者
Ellis, Alexander P. [1 ]
机构
[1] Columbia Univ, Dept Math, New York, NY 10027 USA
关键词
Symmetric functions; Hopf algebras; Supalgebra; Odd symmetric functions; Hives; Littlewood-Richardson; Schubert calculus; HECKE ALGEBRAS;
D O I
10.1007/s10801-012-0389-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In previous work with Mikhail Khovanov and Aaron Lauda we introduced two odd analogues of the Schur functions: one via the combinatorics of Young tableaux (odd Kostka numbers) and one via an odd symmetrization operator. In this paper we introduce a third analogue, the plactic Schur functions. We show they coincide with both previously defined types of Schur function, confirming a conjecture. Using the plactic definition, we establish an odd Littlewood-Richardson rule. We also re-cast this rule in the language of polytopes, via the Knutson-Tao hive model.
引用
收藏
页码:777 / 799
页数:23
相关论文
共 50 条