The odd Littlewood-Richardson rule

被引:4
作者
Ellis, Alexander P. [1 ]
机构
[1] Columbia Univ, Dept Math, New York, NY 10027 USA
关键词
Symmetric functions; Hopf algebras; Supalgebra; Odd symmetric functions; Hives; Littlewood-Richardson; Schubert calculus; HECKE ALGEBRAS;
D O I
10.1007/s10801-012-0389-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In previous work with Mikhail Khovanov and Aaron Lauda we introduced two odd analogues of the Schur functions: one via the combinatorics of Young tableaux (odd Kostka numbers) and one via an odd symmetrization operator. In this paper we introduce a third analogue, the plactic Schur functions. We show they coincide with both previously defined types of Schur function, confirming a conjecture. Using the plactic definition, we establish an odd Littlewood-Richardson rule. We also re-cast this rule in the language of polytopes, via the Knutson-Tao hive model.
引用
收藏
页码:777 / 799
页数:23
相关论文
共 22 条
[1]  
BERENSTEIN AD, 1992, J ALGEBR COMB, V1, P7, DOI [DOI 10.1023/A:1022429213282, 10.1023/A:1022429213282]
[2]  
Buch A.S., 2000, ENSEIGN MATH, V2, P43
[3]  
Ellis A.P, 2011, ARXIV 1111 1320
[4]   The Hopf algebra of odd symmetric functions [J].
Ellis, Alexander P. ;
Khovanov, Mikhail .
ADVANCES IN MATHEMATICS, 2012, 231 (02) :965-999
[5]  
Fulton W., 1997, Young tableaux , London Mathematical Society Student Texts, V35
[6]  
Gelfand I.M., 1985, GROUP THEORETICAL ME, V2, P147
[7]  
Kang S.-J, 2011, ARXIV 1107 1039V1
[8]   Hecke-Clifford algebras and spin Hecke algebras I: The classical affine type [J].
Khongsap, Ta ;
Wang, Weiqiang .
TRANSFORMATION GROUPS, 2008, 13 (02) :389-412
[9]   Skew domino Schensted correspondence and sign-imbalance [J].
Kim, Jang Soo .
EUROPEAN JOURNAL OF COMBINATORICS, 2010, 31 (01) :210-229
[10]   Stable bundles, representation theory and Hermitian operators [J].
Klyachko A.A. .
Selecta Mathematica, 1998, 4 (3) :419-445