Transport of magnetic turbulence in supernova remnants

被引:25
作者
Brose, R. [1 ,2 ]
Telezhinsky, I. [1 ,2 ]
Pohl, M. [1 ,2 ]
机构
[1] DESY, D-15738 Zeuthen, Germany
[2] Univ Potsdam, Inst Phys & Astron, D-14476 Potsdam, Germany
关键词
ISM: supernova remnants; acceleration of particles; turbulence; DIFFUSIVE SHOCK ACCELERATION; NONLINEAR PARTICLE-ACCELERATION; COSMIC-RAY PROPAGATION; AMPLIFICATION; EMISSION; DRIVEN; ENERGY; WAVES; FIELD; SPECTRA;
D O I
10.1051/0004-6361/201527345
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Context. Supernova remnants are known as sources of Galactic cosmic rays for their nonthermal emission of radio waves, X-rays, and gamma rays. However, the observed soft broken power-law spectra are hard to reproduce within standard acceleration theory based on the assumption of Bohm diffusion and steady-state calculations. Aims. We point out that a time-dependent treatment of the acceleration process together with a self-consistent treatment of the scattering turbulence amplification is necessary. Methods. We numerically solve the coupled system of transport equations for cosmic rays and isotropic Alfvenic turbulence. The equations are coupled through the growth rate of turbulence determined by the cosmic-ray gradient and the spatial diffusion coefficient of cosmic rays determined by the energy density of the turbulence. The system is solved on a comoving expanding grid extending upstream for dozens of shock radii, allowing for the self-consistent study of cosmic-ray diffusion in the vicinity of their acceleration site. The transport equation for cosmic rays is solved in a test-particle approach. Results. We demonstrate that the system is typically not in a steady state. In fact, even after several thousand years of evolution, no equilibrium situation is reached. The resulting time-dependent particle spectra strongly differ from those derived assuming a steady state and Bohm diffusion. Our results indicate that proper accounting for the evolution of the scattering turbulence and hence the particle diffusion coefficient is crucial for the formation of the observed soft spectra. In any case, the need to continuously develop magnetic turbulence upstream of the shock introduces nonlinearity in addition to that imposed by cosmic-ray feedback.
引用
收藏
页数:8
相关论文
共 44 条
[1]   The Cherenkov Telescope Array potential for the study of young supernova remnants [J].
Acharya, B. S. ;
Aramo, C. ;
Babic, A. ;
Barrio, J. A. ;
Baushev, A. ;
Tjus, J. Becker ;
Berge, D. ;
Bohacova, M. ;
Bonardi, A. ;
Brown, A. ;
Bugaev, V. ;
Bulik, T. ;
Burton, M. ;
Busetto, G. ;
Caraveo, P. ;
Carosi, R. ;
Carr, J. ;
Chadwick, P. ;
Chudoba, J. ;
Conforti, V. ;
Connaughton, V. ;
Contreras, J. L. ;
Cotter, G. ;
Dazzi, F. ;
De Franco, A. ;
de la Calle, I. ;
Lopez, R. de los Reyes ;
De Lotto, B. ;
De Palma, F. ;
Di Girolamo, T. ;
Di Giulio, C. ;
Di Pierro, F. ;
Dournaux, J. -L. ;
Dwarkadas, V. ;
Ebr, J. ;
Egberts, K. ;
Fesquet, M. ;
Fleischhack, H. ;
Font, L. ;
Fontaine, G. ;
Foerster, A. ;
Fuessling, M. ;
Garcia, B. ;
Lopez, R. Garcia ;
Garczarczyk, M. ;
Gargano, F. ;
Garrido, D. ;
Gaug, M. ;
Giglietto, N. ;
Giordano, F. .
ASTROPARTICLE PHYSICS, 2015, 62 :152-164
[2]   Detection of the Characteristic Pion-Decay Signature in Supernova Remnants [J].
Ackermann, M. ;
Ajello, M. ;
Allafort, A. ;
Baldini, L. ;
Ballet, J. ;
Barbiellini, G. ;
Baring, M. G. ;
Bastieri, D. ;
Bechtol, K. ;
Bellazzini, R. ;
Blandford, R. D. ;
Bloom, E. D. ;
Bonamente, E. ;
Borgland, A. W. ;
Bottacini, E. ;
Brandt, T. J. ;
Bregeon, J. ;
Brigida, M. ;
Bruel, P. ;
Buehler, R. ;
Busetto, G. ;
Buson, S. ;
Caliandro, G. A. ;
Cameron, R. A. ;
Caraveo, P. A. ;
Casandjian, J. M. ;
Cecchi, C. ;
Celik, O. ;
Charles, E. ;
Chaty, S. ;
Chaves, R. C. G. ;
Chekhtman, A. ;
Cheung, C. C. ;
Chiang, J. ;
Chiaro, G. ;
Cillis, A. N. ;
Ciprini, S. ;
Claus, R. ;
Cohen-Tanugi, J. ;
Cominsky, L. R. ;
Conrad, J. ;
Corbel, S. ;
Cutini, S. ;
D'Ammando, F. ;
de Angelis, A. ;
de Palma, F. ;
Dermer, C. D. ;
do Couto e Silva, E. ;
Drell, P. S. ;
Drlica-Wagner, A. .
SCIENCE, 2013, 339 (6121) :807-811
[3]   Non-linear particle acceleration at non-relativistic shock waves in the presence of self-generated turbulence [J].
Amato, E. ;
Blasi, P. .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2006, 371 (03) :1251-1258
[4]   Cosmic-ray acceleration and escape from supernova remnants [J].
Bell, A. R. ;
Schure, K. M. ;
Reville, B. ;
Giacinti, G. .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2013, 431 (01) :415-429
[5]   Turbulent amplification of magnetic field and diffusive shock acceleration of cosmic rays [J].
Bell, AR .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2004, 353 (02) :550-558
[6]   ACCELERATION OF COSMIC-RAYS IN SHOCK FRONTS .1. [J].
BELL, AR .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 1978, 182 (01) :147-156
[7]   TURBULENCE-INDUCED MAGNETIC FIELDS AND STRUCTURE OF COSMIC RAY MODIFIED SHOCKS [J].
Beresnyak, A. ;
Jones, T. W. ;
Lazarian, A. .
ASTROPHYSICAL JOURNAL, 2009, 707 (02) :1541-1549
[8]   PARTICLE-ACCELERATION AT ASTROPHYSICAL SHOCKS - A THEORY OF COSMIC-RAY ORIGIN [J].
BLANDFORD, R ;
EICHLER, D .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1987, 154 (01) :1-75
[9]   A semi-analytical approach to non-linear shock acceleration [J].
Blasi, P .
ASTROPARTICLE PHYSICS, 2002, 16 (04) :429-439
[10]   Cosmic ray current driven turbulence in shocks with efficient particle acceleration: the oblique, long-wavelength mode instability [J].
Bykov, A. M. ;
Osipov, S. M. ;
Ellison, D. C. .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2011, 410 (01) :39-52