Separation of benzalkonium chloride using polymeric membranes

被引:0
作者
Klimonda, Aleksandra [1 ]
Kowalska, Izabela [1 ]
机构
[1] Wroclaw Univ Sci Technol, Fac Environm Engn, Wybrzeze S Wyspianskiego 27, PL-50370 Wroclaw, Poland
关键词
Pressure-driven membrane process; Cationic surfactant; Quaternary ammonium compound; Ultrafiltration; Nanofiltration; NANOFILTRATION MEMBRANES; REMOVAL; ULTRAFILTRATION; TOXICITY; RECOVERY; SURFACTANTS; BACTERIA;
D O I
10.5004/dwt.2020.25234
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
The paper presents the findings of an experimental research employing tubular nanofiltration and ultrafiltration modules for cationic surfactant (benzalkonium chloride, BAC) removal from water solutions of initial concentration in the range from 50 to 1,000 mg/L. The study involved characteristics of the surfactant (critical micelle concentration CMC, micelle size distribution) and an assessment of the membrane filtration efficiency in terms of BAC separation and the volumetric flux. The effect of the modification of process parameters (transmembrane pressure and linear flow velocity) on surfactant retention and fouling intensity was evaluated. The experiments showed that the removal of benzalkonium chloride (CMC = 350 mg/L, micelle size 11.8 nm) with the use of nanofiltration module AFC40 exceeded 74% in all range of concentrations tested. The surfactant concentration was found as an important factor affecting the hydraulic performance of membrane filtration - increasing BAC concentration in the feed solutions resulted in permeability deterioration and the most significant drop in volumetric fluxes was noted for initial solutions of 1,000 mg/L. Moreover, the pore size, the hydrophilicity of the polymer and its net charge strongly affect the membrane fouling by the cationic surfactant particles. The most prone to pore blocking was the ultrafiltration membrane, while the nanofiltration membrane characterized by the lowest MWCO and pore sizes showed the least flux reduction.
引用
收藏
页码:78 / 87
页数:10
相关论文
共 35 条
[1]   Removal of surfactant from industrial wastewaters by coagulation flocculation process [J].
Aboulhassan M.A. ;
Souabi S. ;
Yaacoubi A. ;
Baudu M. .
International Journal of Environmental Science & Technology, 2006, 3 (4) :327-332
[2]  
AKAY G, 1993, CHEM ENG RES DES, V71, P411
[3]   BIODEGRADATION OF SOME CATIONIC SURFACTANTS [J].
BALEUX, B ;
CAUMETTE, P .
WATER RESEARCH, 1977, 11 (09) :833-841
[4]   Application of Fenton oxidation to cosmetic wastewaters treatment [J].
Bautista, P. ;
Mohedano, A. F. ;
Gilarranz, M. A. ;
Casas, J. A. ;
Rodriguez, J. J. .
JOURNAL OF HAZARDOUS MATERIALS, 2007, 143 (1-2) :128-134
[5]   Anionic and cationic surfactant recovery from water using a multistage foam fractionator [J].
Boonyasuwat, S ;
Chavadej, S ;
Malakul, P ;
Scamehorn, JF .
CHEMICAL ENGINEERING JOURNAL, 2003, 93 (03) :241-252
[6]   Study of the characteristics and the performance of self-made nanoporous polyethersulfone membranes [J].
Boussu, K ;
Vandecasteele, C ;
Van der Bruggen, B .
POLYMER, 2006, 47 (10) :3464-3476
[7]   Surfactant fouling of nanofiltration membranes: Measurements and mechanisms [J].
Boussu, Katleen ;
Kindts, Celine ;
Vandecasteele, Carlo ;
Van der Bruggen, Bart .
CHEMPHYSCHEM, 2007, 8 (12) :1836-1845
[8]   Physico-chemical characterization of nanofiltration membranes [J].
Boussu, Katleen ;
De Baerdemaeker, Jeremie ;
Dauwe, Charles ;
Weber, Marc ;
Lynn, Kelvin G. ;
Depla, Diederik ;
Aldea, Steliana ;
Vankelecom, Ivo F. J. ;
Vandecasteele, Carlo ;
Van der Bruggen, Bart .
CHEMPHYSCHEM, 2007, 8 (03) :370-379
[9]   Large scale application of membrane bioreactor technology for the treatment and reuse of an anionic surfactant wastewater [J].
Dhouib, A ;
Hdiji, N ;
Hassäiri, I ;
Sayadi, S .
PROCESS BIOCHEMISTRY, 2005, 40 (08) :2715-2720
[10]   A new class of disinfectant [J].
Domagk, G .
DEUTSCHE MEDIZINISCHE WOCHENSCHRIFT, 1935, 61 :829-832