One-step robust deep learning phase unwrapping

被引:312
作者
Wang, Kaiqiang [1 ]
Li, Ying [1 ]
Qian Kemao [2 ]
Di, Jianglei [1 ]
Zhao, Jianlin [1 ]
机构
[1] Northwestern Polytech Univ, Sch Sci, MOE Key Lab Mat Phys & Chem Extraordinary Condit, Shaanxi Key Lab Opt Informat Technol, Xian 710072, Shaanxi, Peoples R China
[2] Nanyang Technol Univ, Sch Comp Sci & Engn, Singapore 639798, Singapore
基金
中国国家自然科学基金;
关键词
CONVOLUTIONAL NEURAL-NETWORK; TRANSPORT; MICROSCOPY; RECONSTRUCTION; SCATTERING; ALGORITHM;
D O I
10.1364/OE.27.015100
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Phase unwrapping is an important but challenging issue in phase measurement. Ey:en with the research efforts of a few decades, unfortunately, the problem remains not Well solved, especially When heavy noise and abasing (undersampling) are present. We propose a database generation method for phase-type objects and a one-step deep learning phase unwrapping method. With a trained deep neural network, the unseen phase fields of living mouse osteoblasts and dynamic candle flame are successfully UnWrapped, demonstrating that the complicated nonlinear phase unwrapping task can be directly fulfilled in one step by a single deep neural network. Excellent anti-noise and anti-aliasing performances outperforming classical methods are highlighted in this paper. (C) 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
引用
收藏
页码:15100 / 15115
页数:16
相关论文
共 55 条
[1]  
[Anonymous], 2015, PROCIEEE CONFCOMPUT, DOI DOI 10.1109/CVPR.2015.7298594
[2]   Deep learning for photoacoustic tomography from sparse data [J].
Antholzer, Stephan ;
Haltmeier, Markus ;
Schwab, Johannes .
INVERSE PROBLEMS IN SCIENCE AND ENGINEERING, 2019, 27 (07) :987-1005
[3]   Quantitative optical phase microscopy [J].
Barty, A ;
Nugent, KA ;
Paganin, D ;
Roberts, A .
OPTICS LETTERS, 1998, 23 (11) :817-819
[4]  
Dardikman G, 2018, Imaging and Applied Optics 2018 (3D, AO, AIO, COSI, DH, IS, LACSEA, LS&C, MATH, pcAOP), OSA technical digest
[5]   Image Super-Resolution Using Deep Convolutional Networks [J].
Dong, Chao ;
Loy, Chen Change ;
He, Kaiming ;
Tang, Xiaoou .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2016, 38 (02) :295-307
[6]   LEAST-SQUARE FITTING A WAVEFRONT DISTORTION ESTIMATE TO AN ARRAY OF PHASE-DIFFERENCE MEASUREMENTS [J].
FRIED, DL .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA, 1977, 67 (03) :370-375
[7]   SATELLITE RADAR INTERFEROMETRY - TWO-DIMENSIONAL PHASE UNWRAPPING [J].
GOLDSTEIN, RM ;
ZEBKER, HA ;
WERNER, CL .
RADIO SCIENCE, 1988, 23 (04) :713-720
[8]   Deep Residual Learning for Image Recognition [J].
He, Kaiming ;
Zhang, Xiangyu ;
Ren, Shaoqing ;
Sun, Jian .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :770-778
[9]   A fast learning algorithm for deep belief nets [J].
Hinton, Geoffrey E. ;
Osindero, Simon ;
Teh, Yee-Whye .
NEURAL COMPUTATION, 2006, 18 (07) :1527-1554
[10]  
Hochreiter S., 1991, Technische Universitat Munchen, V91, P1