Computing adjusted risk ratios and risk differences in Stata

被引:242
作者
Norton, Edward C. [1 ,2 ,3 ]
Miller, Morgen M. [1 ,2 ]
Kleinman, Lawrence C. [4 ,5 ]
机构
[1] Univ Michigan, Dept Hlth Management & Policy, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Dept Econ, Ann Arbor, MI 48109 USA
[3] Natl Bur Econ Res, Cambridge, MA 02138 USA
[4] Mt Sinai, Dept Hlth Evidence & Policy, Icahn Sch Med, New York, NY USA
[5] Mt Sinai, Dept Pediat, Icahn Sch Med, New York, NY USA
基金
美国国家卫生研究院; 美国医疗保健研究与质量局;
关键词
st0306; adjrr; risk ratio; adjusted risk ratio; risk difference; adjusted risk difference; odds ratio; logistic; logit; probit; multinomial; ordered; ODDS RATIOS; CONFIDENCE-INTERVALS; LOGISTIC-REGRESSION; RELATIVE RISKS; COMMON;
D O I
10.1177/1536867X1301300304
中图分类号
O1 [数学]; C [社会科学总论];
学科分类号
03 ; 0303 ; 0701 ; 070101 ;
摘要
In this article, we explain how to calculate adjusted risk ratios and risk differences when reporting results from logit, probit, and related nonlinear models. Building on Stata's margins command, we create a new postestimation command, adjrr, that calculates adjusted risk ratios and adjusted risk differences after running a logit or probit model with a binary, a multinomial, or an ordered outcome. adjrr reports the point estimates, delta-method standard errors, and 95% confidence intervals and can compute these for specific values of the variable of interest. It automatically adjusts for complex survey design as in the fit model. Data from the Medical Expenditure Panel Survey and the National Health and Nutrition Examination Survey are used to illustrate multiple applications of the command.
引用
收藏
页码:492 / 509
页数:18
相关论文
共 15 条