A Note on Truncated Exponential-Based Appell Polynomials

被引:15
作者
Khan, Subuhi [1 ]
Yasmin, Ghazala [1 ]
Ahmad, Naeem [1 ]
机构
[1] Aligarh Muslim Univ, Dept Math, Aligarh, Uttar Pradesh, India
关键词
Truncated exponential polynomials; Appell polynomials; Operational methods;
D O I
10.1007/s40840-016-0343-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This article deals with the introduction of truncated exponential-based Appell polynomials and derivation of their properties. The operational correspondence between these polynomials and Appell polynomials is established. Also, an integral representation for these polynomials in terms of a recently introduced family of polynomials is derived. Special emphasis is given to the truncated exponential-based Bernoulli and Euler polynomials and their related numbers.
引用
收藏
页码:373 / 388
页数:16
相关论文
共 19 条
  • [1] Andrews LC., 1985, Special Functions for Engineers and Applied Mathematicians
  • [2] Appell P., 1880, Ann. Sci. Ecole. Norm. Sup, V9, P119, DOI [10.24033/asens.186, DOI 10.24033/ASENS.186]
  • [3] BERNOULLI J, 1713, ARS CONJECTANDI, P97
  • [4] Boas RP., 1964, POLYNOMIAL EXPANSION
  • [5] Laguerre-type exponentials and generalized Appell polynomials
    Bretti, G
    Cesarano, C
    Ricci, PE
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2004, 48 (5-6) : 833 - 839
  • [6] Bretti G., 2004, Abstract and Applied Analysis, V2004, P613, DOI 10.1155/S1085337504306263
  • [7] A determinantal approach to Appell polynomials
    Costabile, F. A.
    Longo, E.
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2010, 234 (05) : 1528 - 1542
  • [8] A note on truncated polynomials
    Dattoli, G
    Cesarano, C
    Sacchetti, D
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2003, 134 (2-3) : 595 - 605
  • [9] Dattoli G, 1997, RIV NUOVO CIMENTO, V20, P1
  • [10] Dattoli G., 2000, P MELF SCH ADV TOP M, V1, P147