CSP DICHOTOMY FOR SPECIAL POLYADS

被引:5
作者
Barto, Libor [1 ,2 ]
Bulin, Jakub [3 ]
机构
[1] McMaster Univ, Dept Math & Stat, Hamilton, ON L8S 4K1, Canada
[2] Charles Univ Prague, Dept Algebra, Prague 18675, Czech Republic
[3] Charles Univ Prague, Fac Math & Phys, Prague 18675, Czech Republic
关键词
Constraint satisfaction problem; graph coloring; bounded width; special triad; CONSTRAINT SATISFACTION; COMPLEXITY;
D O I
10.1142/S0218196713500215
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a digraph H, the Constraint Satisfaction Problem with template H, or CSP(H), is the problem of deciding whether a given input digraph G admits a homomorphism to H. The CSP dichotomy conjecture of Feder and Vardi states that for any digraph H, CSP(H) is either in P or NP-complete. Barto, Kozik, Maroti and Niven (Proc. Amer. Math. Soc. 137 (2009) 2921-2934) confirmed the conjecture for a class of oriented trees called special triads. We generalize this result, establishing the dichotomy for a class of oriented trees which we call special polyads. We prove that every tractable special polyad has bounded width and provide the description of special polyads of width 1. We also construct a tractable special polyad which neither has width 1 nor admits any near-unanimity polymorphism.
引用
收藏
页码:1151 / 1174
页数:24
相关论文
共 14 条
[1]   Constraint Satisfaction Problems of Bounded Width [J].
Barto, Libor ;
Kozik, Marcin .
2009 50TH ANNUAL IEEE SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE: FOCS 2009, PROCEEDINGS, 2009, :595-603
[2]   CSP DICHOTOMY FOR SPECIAL TRIADS [J].
Barto, Libor ;
Kozik, Marcin ;
Maroti, Miklos ;
Niven, Todd .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 137 (09) :2921-2934
[3]   THE CSP DICHOTOMY HOLDS FOR DIGRAPHS WITH NO SOURCES AND NO SINKS (A POSITIVE ANSWER TO A CONJECTURE OF BANG-JENSEN AND HELL) [J].
Barto, Libor ;
Kozik, Marcin ;
Niven, Todd .
SIAM JOURNAL ON COMPUTING, 2009, 38 (05) :1782-1802
[4]   Classifying the complexity of constraints using finite algebras [J].
Bulatov, A ;
Jeavons, P ;
Krokhin, A .
SIAM JOURNAL ON COMPUTING, 2005, 34 (03) :720-742
[5]  
Dalmau V, 1999, LECT NOTES COMPUT SC, V1713, P159
[6]   Classification of homomorphisms to oriented cycles and of k-partite satisfiability [J].
Feder, T .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 2001, 14 (04) :471-480
[7]   The computational structure of monotone monadic SNP and constraint satisfaction: A study through datalog and group theory [J].
Feder, T ;
Vardi, MY .
SIAM JOURNAL ON COMPUTING, 1998, 28 (01) :57-104
[8]   POLYNOMIAL GRAPH-COLORINGS [J].
GUTJAHR, W ;
WELZL, E ;
WOEGINGER, G .
DISCRETE APPLIED MATHEMATICS, 1992, 35 (01) :29-45
[9]   ON MULTIPLICATIVE GRAPHS AND THE PRODUCT CONJECTURE [J].
HAGGKVIST, R ;
HELL, P ;
MILLER, DJ ;
LARA, VN .
COMBINATORICA, 1988, 8 (01) :63-74
[10]   ON THE COMPLEXITY OF H-COLORING [J].
HELL, P ;
NESETRIL, J .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1990, 48 (01) :92-110