Adjoint algebraic groups as automorphism groups of a projector on a central simple algebra

被引:0
作者
Petrov, Viktor A. [1 ,2 ]
Semenov, Andrei V. [1 ,2 ]
机构
[1] St Petersburg State Univ, 14th Line,29b, St Petersburg 199178, Russia
[2] RAS, BPDMI, Nab Fontanki 27, St Petersburg 191023, Russia
关键词
Algebraic groups; Central simple algebras; Casimir operator;
D O I
10.1016/j.jalgebra.2020.06.006
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that any adjoint absolutely simple linear algebraic group over a field of characteristic zero is the automorphism group of some projector on a central simple algebra. Projective homogeneous varieties can be described in these terms; in particular, we reproduce quadratic equations by Lichtenstein defining them. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页码:574 / 578
页数:5
相关论文
共 10 条
[1]  
[Anonymous], 1960, J. Indian Math. Soc.
[2]   Vassiliev invariants from symmetric spaces [J].
Biswas, Indranil ;
Gammelgaard, Niels Leth .
JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2016, 25 (10)
[3]   CHARACTERIZATION OF SPIN REPRESENTATIONS [J].
BROWN, RB .
CANADIAN JOURNAL OF MATHEMATICS, 1971, 23 (05) :896-&
[4]   GEOMETRY OF INNER IDEALS [J].
FAULKNER, JR .
JOURNAL OF ALGEBRA, 1973, 26 (01) :1-9
[5]   Groups of type E7 over arbitrary fields [J].
Garibaldi, RS .
COMMUNICATIONS IN ALGEBRA, 2001, 29 (06) :2689-2710
[6]   Geometries, the principle of duality, and algebraic groups [J].
Garibaldi, Skip ;
Carr, Michael .
EXPOSITIONES MATHEMATICAE, 2006, 24 (03) :195-234
[7]   Automorphism groups of finite dimensional simple algebras [J].
Gordeev, NL ;
Popov, VL .
ANNALS OF MATHEMATICS, 2003, 158 (03) :1041-1065
[8]   ON A PROPERTY OF HIGHEST WEIGHT VECTORS [J].
HANNABUSS, KC .
QUARTERLY JOURNAL OF MATHEMATICS, 1982, 33 (129) :91-96
[9]   Strongly multiplicity free modules for Lie algebras and quantum groups [J].
Lehrer, G. I. ;
Zhang, R. B. .
JOURNAL OF ALGEBRA, 2006, 306 (01) :138-174
[10]   A SYSTEM OF QUADRICS DESCRIBING THE ORBIT OF THE HIGHEST WEIGHT VECTOR [J].
LICHTENSTEIN, W .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1982, 84 (04) :605-608