Sp6(2a) is "Good" for the McKay, Alperin weight, and related local-global conjectures

被引:9
作者
Fry, Amanda A. Schaeffer [1 ]
机构
[1] Univ Arizona, Dept Math, Tucson, AZ 85721 USA
基金
美国国家科学基金会;
关键词
Cross characteristic representations; Local-global conjectures; Finite classical groups; Alperin weight conjecture; McKay conjecture; Alperin-McKay conjecture; CROSS-CHARACTERISTIC REPRESENTATIONS; DECOMPOSITION NUMBERS; REDUCTION THEOREM; BLOCKS; CHARACTERS;
D O I
10.1016/j.jalgebra.2013.12.007
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The so-called "local global" conjectures in the representation theory of finite groups relate the representation theory of G to that of certain proper subgroups, such as the normalizers of particular p-groups. Recent results by several authors reduce some of these conjectures to showing that a certain collection of stronger conditions holds for all finite simple groups. Here, we show that G = Sp(6)(2(a)) is "good" for these reductions for the McKay conjecture, the Alperin weight conjecture, and their blockwise versions. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:13 / 47
页数:35
相关论文
共 28 条
[1]   WEIGHTS FOR CLASSICAL-GROUPS [J].
AN, JB .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1994, 342 (01) :1-42
[2]  
[Anonymous], 1989, SIMPLE GROUPS LIE TY
[3]  
[Anonymous], THESIS U ARIZONA
[4]  
[Anonymous], 1998, LONDON MATH SOC LECT
[5]  
Bonnafé C, 2003, PUBL MATH-PARIS, V97, P1, DOI 10.1007/s10240-003-0013-3
[6]  
Breuer Thomas., 2004, Ctbllib - a gap package
[7]  
BROUE M, 1989, J REINE ANGEW MATH, V395, P56
[8]   Odd character degrees for Sp(2n, 2) [J].
Cabanes, Marc .
COMPTES RENDUS MATHEMATIQUE, 2011, 349 (11-12) :611-614
[9]  
DIGNE F, 1990, ASTERISQUE, P113
[10]  
Digne F., 1991, London Math. Soc. Student Texts, V21