Destabilization of low-n peeling modes by trapped energetic particles

被引:8
作者
Hao, G. Z. [1 ]
Liu, Y. Q. [2 ]
Wang, A. K. [1 ]
Matsunaga, G. [3 ]
Okabayashi, M. [4 ]
Mou, Z. Z. [1 ]
Qiu, X. M. [1 ]
机构
[1] Southwestern Inst Phys, Chengdu 610041, Peoples R China
[2] Euratom CCFE Fus Assoc, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England
[3] Japan Atom Energy Agcy, Naka, Ibaraki 3110193, Japan
[4] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA
基金
中国国家自然科学基金;
关键词
HYDROMAGNETIC-STABILITY; KINK MODE; TOKAMAK; REGIME; JET;
D O I
10.1063/1.4811382
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The kinetic effect of trapped energetic particles (EPs), arising from perpendicular neutral beam injection, on the stable low-n peeling modes in tokamak plasmas is investigated, through numerical solution of the mode's dispersion relation derived from an energy principle. A resistive-wall peeling mode with m/n = 6/1, with m and n being the poloidal and toroidal mode numbers, respectively, is destabilized by trapped EPs as the EPs' pressure exceeds a critical value beta*(c), which is sensitive to the pitch angle of trapped EPs. The dependence of beta*(c) on the particle pitch angle is eventually determined by the bounce average of the mode eigenfunction. Peeling modes with higher m and n numbers can also be destabilized by trapped EPs. Depending on the wall distance, either a resistive-wall peeling mode or an ideal-kink peeling mode can be destabilized by EPs. (C) 2013 AIP Publishing LLC.
引用
收藏
页数:10
相关论文
共 29 条
[1]   EFFECT OF TOROIDAL PLASMA-FLOW AND FLOW SHEAR ON GLOBAL MAGNETOHYDRODYNAMIC MHD MODES [J].
CHU, MS ;
GREENE, JM ;
JENSEN, TH ;
MILLER, RL ;
BONDESON, A ;
JOHNSON, RW ;
MAUEL, ME .
PHYSICS OF PLASMAS, 1995, 2 (06) :2236-2241
[2]   Magnetohydrodynamic stability of tokamak edge plasmas [J].
Connor, JW ;
Hastie, RJ ;
Wilson, HR ;
Miller, RL .
PHYSICS OF PLASMAS, 1998, 5 (07) :2687-2700
[3]  
Freidberg J. F., 1987, Ideal Magnetohydrodynamics
[4]   Model for current-driven edge-localized modes [J].
Gimblett, CG ;
Hastie, RJ ;
Helander, P .
PHYSICAL REVIEW LETTERS, 2006, 96 (03)
[5]   VARIATIONAL-METHODS FOR STUDYING TOKAMAK STABILITY IN THE PRESENCE OF A THIN RESISTIVE WALL [J].
HANEY, SW ;
FREIDBERG, JP .
PHYSICS OF FLUIDS B-PLASMA PHYSICS, 1989, 1 (08) :1637-1645
[6]   Kinetic effects of trapped energetic particles on stability of external kink modes with a resistive wall [J].
Hao, G. Z. ;
Liu, Y. Q. ;
Wang, A. K. ;
Qiu, X. M. .
PHYSICS OF PLASMAS, 2012, 19 (03)
[7]   Effect of Trapped Energetic Particles on the Resistive Wall Mode [J].
Hao, G. Z. ;
Wang, A. K. ;
Liu, Y. Q. ;
Qiu, X. M. .
PHYSICAL REVIEW LETTERS, 2011, 107 (01)
[8]   Stabilization of the resistive wall mode instability by trapped energetic particles [J].
Hao, G. Z. ;
Liu, Y. Q. ;
Wang, A. K. ;
Jiang, H. B. ;
Lu, Gaimin ;
He, H. D. ;
Qiu, X. M. .
PHYSICS OF PLASMAS, 2011, 18 (03)
[9]   Application of the low-frequency energy principle to wall modes [J].
Hu, B ;
Betti, R ;
Manickam, J .
PHYSICS OF PLASMAS, 2005, 12 (05)
[10]   Resistive wall mode in collisionless quasistationary plasmas [J].
Hu, B ;
Betti, R .
PHYSICAL REVIEW LETTERS, 2004, 93 (10) :105002-1