Vortex Density Models for Superconductivity and Superfluidity

被引:17
作者
Baldo, S. [1 ]
Jerrard, R. L. [2 ]
Orlandi, G. [1 ]
Soner, H. M. [3 ]
机构
[1] Univ Verona, Dept Comp Sci, I-37100 Verona, Italy
[2] Univ Toronto, Dept Math, Toronto, ON M5S 1A1, Canada
[3] ETH, Dept Math, CH-8092 Zurich, Switzerland
关键词
GINZBURG-LANDAU MODEL; LOCAL MINIMIZERS; MAGNETIC-FIELD; ENERGY; BREAKDOWN;
D O I
10.1007/s00220-012-1629-2
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study some functionals that describe the density of vortex lines in superconductors subject to an applied magnetic field, and in Bose-Einstein condensates subject to rotational forcing, in quite general domains in 3 dimensions. These functionals are derived from more basic models via Gamma-convergence, here and in the companion paper (Baldo et al. in Arch Rat Mech Anal 205(3):699-752, 2012). In our main results, we use these functionals to obtain leading order descriptions of the first critical applied magnetic field (for superconductors) and forcing (for Bose-Einstein), above which ground states exhibit nontrivial vorticity, as well as a characterization of the vortex density in terms of a non local vector-valued generalization of the classical obstacle problem.
引用
收藏
页码:131 / 171
页数:41
相关论文
共 35 条
[1]   Giant vortex and the breakdown of strong pinning in a rotating Bose-Einstein condensate [J].
Aftalion, A ;
Alama, S ;
Bronsard, L .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2005, 178 (02) :247-286
[2]   Shape of vortices for a rotating Bose-Einstein condensate [J].
Aftalion, A ;
Jerrard, RL .
PHYSICAL REVIEW A, 2002, 66 (02) :1-7
[3]   Vortex energy and vortex bending for a rotating Bose-Einstein condensate [J].
Aftalion, A ;
Riviere, T .
PHYSICAL REVIEW A, 2001, 64 (04) :436111-436117
[4]   Pinning effects and their breakdown for a Ginzburg-Landau model with normal inclusions [J].
Alama, S ;
Bronsard, L .
JOURNAL OF MATHEMATICAL PHYSICS, 2005, 46 (09)
[5]   On the Ginzburg-Landau model of a superconducting ball in a uniform field [J].
Alama, S ;
Bronsard, L ;
Montero, JA .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2006, 23 (02) :237-267
[6]   Vortices and pinning effects tor the Ginzburg-Landau model in multiply connected domains [J].
Alama, S ;
Bronsard, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2006, 59 (01) :36-70
[7]   Convergence of Ginzburg-Landau Functionals in Three-Dimensional Superconductivity [J].
Baldo, S. ;
Jerrard, R. L. ;
Orlandi, G. ;
Soner, H. M. .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2012, 205 (03) :699-752
[8]  
Bourget JL, 2004, POSITIF, P1, DOI 10.1007/s10240-004-0019-5
[9]   A variational formulation for the two-sided obstacle problem with measure data [J].
Brezis, H ;
Serfaty, S .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2002, 4 (02) :357-374
[10]  
Caselles Vicent., 2011, Hand- book of Mathematical Methods in Imaging, 1016-1057