Four-dimensional manifolds with degenerate self-dual Weyl curvature operator

被引:5
作者
Cortes-Ayaso, Alexandre [1 ]
Diaz-Ramos, J. Carlos [2 ]
Garcia-Rio, Eduardo [1 ]
机构
[1] Univ Santiago de Compostela, Fac Math, Santiago De Compostela 15782, Spain
[2] Natl Univ Ireland Univ Coll Cork, Dept Math, Cork, Ireland
关键词
para-Hermitian and para-Kahler structure; self-dual weyl curvature tensor; walker metric;
D O I
10.1007/s10455-007-9101-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is shown that any four-dimensional Walker metric of nowhere zero scalar curvature has a natural almost para-Hermitian structure. In contrast to the Goldberg-Sachs theorem, if this structure is self-dual and *-Einstein, it is symplectic but not necessarily integrable. This is due to the non-diagonalizability of the self-dual Weyl conformal curvature tensor.
引用
收藏
页码:185 / 193
页数:9
相关论文
共 27 条
[1]   Generalized Goldberg-Sachs theorems for pseudo-Riemannian four-manifolds [J].
Apostolov, V .
JOURNAL OF GEOMETRY AND PHYSICS, 1998, 27 (3-4) :185-198
[2]   The Riemannian Goldberg-Sachs theorem [J].
Apostolov, V ;
Gauduchon, P .
INTERNATIONAL JOURNAL OF MATHEMATICS, 1997, 8 (04) :421-439
[3]  
Apostolov V., 2003, FIELDS I COMMUN, V35, P25
[4]   Holonomy of pseudo-Riemannanian manifolds with signature (n,n) [J].
Bergery, LB ;
Ikemakhen, A .
BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 1997, 125 (01) :93-114
[5]   Isotropic Kahler hyperbolic twistor spaces [J].
Blair, DE ;
Davidov, J ;
Muskarov, O .
JOURNAL OF GEOMETRY AND PHYSICS, 2004, 52 (01) :74-88
[6]   Pseudo-Chern classes and opposite Chern classes of indefinite almost Hermitian manifolds [J].
Bonome, A ;
Castro, R ;
Garcia-Rio, E ;
Hervella, LM ;
Matsushita, Y .
ACTA MATHEMATICA HUNGARICA, 1997, 75 (04) :299-316
[7]   Anti-Kahlerian manifolds [J].
Borowiec, A ;
Francaviglia, M ;
Volovich, I .
DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2000, 12 (03) :281-289
[8]  
Boyer C. P., 1980, General relativity and gravitation. One hundred years after the birth of Albert Einstein, vol.2, P241
[9]   Conformally Osserman four-dimensional manifolds whose conformal Jacobi operators have complex eigenvalues [J].
Brozos-Vázquez, M ;
García-Rjo, E ;
Vázquez-Lorenzo, R .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2006, 462 (2069) :1425-1441
[10]   Bochner-Kahler metrics [J].
Bryant, RL .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 14 (03) :623-715