Impact force profile and failure classification of reinforced concrete bridge columns against vehicle impact

被引:119
作者
Do, Tin V. [1 ]
Pham, Thong M. [1 ]
Hao, Hong [1 ]
机构
[1] Curtin Univ, Sch Civil & Mech Engn, Ctr Infrastruct Monitoring & Protect, Kent St, Bentley, WA 6102, Australia
基金
澳大利亚研究理事会;
关键词
Bridge columns; Vehicle collisions; Traffic accidents; Shear mechanism; Failure modes; Impact response; Dynamic effects; PERFORMANCE; COLLISION; BEHAVIOR; BEAMS; RESPONSES; SHEAR; PIERS; MODEL;
D O I
10.1016/j.engstruct.2019.01.040
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Numerical simulations are utilized in this study to define the impact force profile generated by vehicle collisions on reinforced concrete bridge columns (RCBCs) and classify the dynamic responses and failure of the columns under collision events. The results indicate that both the column properties (i.e. dimension of the cross-section and concrete strength) and initial conditions of vehicles (i.e. vehicle velocity, engine mass, and vehicle mass) play a crucial role in determining the impact force profile from the vehicle collision. A new vehicle impact force model is proposed for engineers to use in design of RCBCs under vehicle collisions in which the influence of shear failure of the column on impact force is considered. Based on the shear mechanism of RCBCs under impact events, the maximum dynamic shear capacity of a column is defined. Furthermore, the bending moment and shear force distributions, as well as the failure mode of RCBCs have been classified into two categories, i.e. flexural response and shear response governed failure with respect to the peak impact force (PIF) on the column. For the flexural response governed failure mode, flexural cracks at the intermediate sections are formed in the positive side of the column, while the diagonal shear or punching shear failure at the impact area together with negative flexural-shear cracks occur in the column if the shear failure mode dominant the column responses.
引用
收藏
页码:443 / 458
页数:16
相关论文
共 39 条
  • [1] Performance of bridge piers under vehicle collision
    Abdelkarim, Omar I.
    ElGawady, Mohamed A.
    [J]. ENGINEERING STRUCTURES, 2017, 140 : 337 - 352
  • [2] Performance of hollow-core FRP-concrete-steel bridge columns subjected to vehicle collision
    Abdelkarim, Omar I.
    ElGawady, Mohamed A.
    [J]. ENGINEERING STRUCTURES, 2016, 123 : 517 - 531
  • [3] Agrawal A.K., 2011, Bridge vehicle impact assessment
  • [4] Agrawal AK, 2013, ADV MATER RES-SWITZ, V639-640, P13, DOI [10.4028/www.scientific.net/AMR.639-640.13, 10.4028/www.scientific.net/AMR.639.640.13]
  • [5] An assessment of the current Eurocode 1 design methods for building structure steel columns under vehicle impact
    Al-Thairy, Haitham
    Wang, Y. C.
    [J]. JOURNAL OF CONSTRUCTIONAL STEEL RESEARCH, 2013, 88 : 164 - 171
  • [6] American Association of State and Highway Transportation Officials (AASHTO), 2012, AASHTO LRFD BRIDGE D
  • [7] Bakis C E., 2002, Guide for the design and construction of externally bonded FRP systems for strengthening concrete structures, V440
  • [8] Buth C.E., 2010, FHWA/TX-10/ 9-4973-1
  • [9] Buth CE, 2011, Report No. FHWA/TX-11/9-4973-2
  • [10] CEN, 2002, 1991112002 CEN BS