Perspective: optically-pumped III-V quantum dot microcavity lasers via CMOS compatible patterned Si (001) substrates

被引:14
作者
Wei, Wenqi [1 ]
Feng, Qi [1 ]
Wang, Zihao [1 ,2 ]
Wang, Ting [1 ,2 ]
Zhang, Jianjun [1 ,2 ]
机构
[1] Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Ctr Mat Sci & Optoelect Engn, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
quantum dots; silicon photonics; epitaxial growth; semiconductor lasers; MICRO-DISK LASERS; LOW-THRESHOLD; SILICON; GE; INTEGRATION; DIODES; GROWTH; LAYER;
D O I
10.1088/1674-4926/40/10/101303
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
Direct epitaxial growth III-V quantum dot (QD) structures on CMOS-compatible silicon substrates is considered as one of the most promising approaches to achieve low-cost and high-yield Si-based lasers for silicon photonic integration. However, epitaxial growth of III-V materials on Si encounters the following three major challenges: high density of threading dislocations, antiphase boundaries and thermal cracks, which significantly degrade the crystal quality and potential device performance. In this review, we will focus on some recent results related to InAs/GaAs quantum dot lasers on Si (001) substrates by III-V/IV hybrid epitaxial growth via (111)-faceted Si hollow structures. Moreover, by using the step-graded epitaxial growth process the emission wavelength of InAs QDs can be extended from O-band to C/L-band. High-performance InAs/GaAs QD microdisk lasers with sub-milliwatts threshold on Si (001) substrates are fabricated and characterized. The above results pave a promising path towards the on-chip lasers for optical interconnect applications.
引用
收藏
页数:9
相关论文
共 64 条
  • [1] GROWTH OF SINGLE DOMAIN GAAS LAYER ON (100)-ORIENTED SI SUBSTRATE BY MOCVD
    AKIYAMA, M
    KAWARADA, Y
    KAMINISHI, K
    [J]. JAPANESE JOURNAL OF APPLIED PHYSICS PART 2-LETTERS & EXPRESS LETTERS, 1984, 23 (11): : L843 - L845
  • [2] Epitaxial growth of antiphase boundary free GaAs layer on 300 mm Si(001) substrate by metalorganic chemical vapour deposition with high mobility
    Alcotte, R.
    Martin, M.
    Moeyaert, J.
    Cipro, R.
    David, S.
    Bassani, F.
    Ducroquet, F.
    Bogumilowicz, Y.
    Sanchez, E.
    Ye, Z.
    Bao, X. Y.
    Pin, J. B.
    Baron, T.
    [J]. APL MATERIALS, 2016, 4 (04):
  • [3] SILICON PHOTONICS Energy-efficient communication
    Asghari, Mehdi
    Krishnamoorthy, Ashok V.
    [J]. NATURE PHOTONICS, 2011, 5 (05) : 268 - 270
  • [4] Silicon on ultra-low-loss waveguide photonic integration platform
    Bauters, Jared F.
    Davenport, Michael L.
    Heck, Martijn J. R.
    Doylend, J. K.
    Chen, Arnold
    Fang, Alexander W.
    Bowers, John E.
    [J]. OPTICS EXPRESS, 2013, 21 (01): : 544 - 555
  • [5] Low-temperature photoluminescence study of thin epitaxial GaAs films on Ge substrates
    Brammertz, Guy
    Mols, Yves
    Degroote, Stefan
    Motsnyi, Vasyl
    Leys, Maarten
    Borghs, Gustaaf
    Caymax, Matty
    [J]. JOURNAL OF APPLIED PHYSICS, 2006, 99 (09)
  • [6] An electrically pumped germanium laser
    Camacho-Aguilera, Rodolfo E.
    Cai, Yan
    Patel, Neil
    Bessette, Jonathan T.
    Romagnoli, Marco
    Kimerling, Lionel C.
    Michel, Jurgen
    [J]. OPTICS EXPRESS, 2012, 20 (10): : 11316 - 11320
  • [7] STABILITIES OF SINGLE-LAYER AND BILAYER STEPS ON SI(001) SURFACES
    CHADI, DJ
    [J]. PHYSICAL REVIEW LETTERS, 1987, 59 (15) : 1691 - 1694
  • [8] Electrically pumped continuous-wave 1.3 μm InAs/GaAs quantum dot lasers monolithically grown on on-axis Si (001) substrates
    Chen, Siming
    Liao, Mengya
    Tang, Mingchu
    Wu, Jiang
    Martin, Mickael
    Baron, Thierry
    Seeds, Alwyn
    Liu, Huiyun
    [J]. OPTICS EXPRESS, 2017, 25 (05): : 4632 - 4639
  • [9] Chen SM, 2016, NAT PHOTONICS, V10, P307, DOI [10.1038/nphoton.2016.21, 10.1038/NPHOTON.2016.21]
  • [10] Initiation strategies for simultaneous control of antiphase domains and stacking faults in GaAs solar cells on Ge
    Faucher, Joseph
    Masuda, Taizo
    Lee, Minjoo Larry
    [J]. JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2016, 34 (04):