Precision electromagnetic calibration technique for micro-Newton thrust stands

被引:19
|
作者
He, Zhen [1 ]
Wu, Jianjun [1 ]
Zhang, Daixian [1 ]
Lu, Gaofei [1 ]
Liu, Zejun [1 ]
Zhang, Rui [1 ]
机构
[1] Natl Univ Def Technol, Coll Aerosp Sci & Engn, Changsha 410073, Hunan, Peoples R China
来源
REVIEW OF SCIENTIFIC INSTRUMENTS | 2013年 / 84卷 / 05期
基金
中国国家自然科学基金;
关键词
LASER; BALANCE;
D O I
10.1063/1.4804285
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
This paper introduces a new direct non-contact electromagnetic calibration technique for high precision measurements of micro-thrust and impulse. A ring-shaped electromagnet with an air gap is used in the calibration. The calibration force is produced by the interaction of a uniform magnetic field with a copper wire current in the air gap. This force depends linearly on this current as well as the steady angular displacement of the torsion arm of the thrust stand. The range of calibration force is very large and the calibration force is easy to generate and insensitive to the arm displacement. The calibration uncertainty for a 150-mu N force is 4.17 mu N. The more influential factor on the calibration uncertainty is the magnetization of the electromagnet core due to the copper wire current. In the impulse calibration, the exerted impulse is linearly dependent on the maximal angular displacement of the torsion arm. The uncertainty in the impulse calibration is determined by uncertainties in both the force calibration and the pulse time. (C) 2013 AIP Publishing LLC.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] A disturbance suppression micro-Newton force sensor based on shadow method
    Yang, Yong
    Zhao, Meirong
    Li, Dantong
    Tao, Moran
    Zhu, Chunyuan
    Zheng, Yelong
    Tian, Yu
    ISA TRANSACTIONS, 2023, 134 : 442 - 450
  • [22] Micro-newton hall electric propulsion technology for gravitational wave detection
    Yu D.
    Cui K.
    Liu H.
    Zeng M.
    Jiang W.
    Harbin Gongye Daxue Xuebao/Journal of Harbin Institute of Technology, 2020, 52 (06): : 171 - 181
  • [23] Micro-Newton Detection by Using Graphene-Paper Force Sensor
    Yadegari, Amir
    Omidi, Meisam
    Choolaei, Mohammadmehdi
    Haghiralsadat, F.
    Yazdian, F.
    28TH EUROPEAN CONFERENCE ON SOLID-STATE TRANSDUCERS (EUROSENSORS 2014), 2014, 87 : 967 - 970
  • [24] Upconverting Nanoparticles as Optical Sensors of Nano- to Micro-Newton Forces
    Lay, Alice
    Wang, Derek S.
    Wisser, Michael D.
    Mehlenbacher, Randy D.
    Lin, Yu
    Goodman, Miriam B.
    Mao, Wendy L.
    Dionne, Jennifer A.
    NANO LETTERS, 2017, 17 (07) : 4172 - 4177
  • [25] USE OF RADIATION PRESSURE TO CALIBRATE SUB MICRO-NEWTON FORCES AND DAMPING RATIOS
    Abbas, Khawar
    Alaie, Seyedhamidreza
    Hossein-Zadeh, Mani
    Leseman, Zayd C.
    PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION (IMECE 2010), VOL 10, 2012, : 57 - 61
  • [26] Curium-244 alpha emission for a nano- and micro-Newton thruster
    Bruno, C
    RosaClot, M
    ACTA ASTRONAUTICA, 1996, 38 (4-8) : 231 - 234
  • [27] Ion-induced electron emission cathode for a micro-newton HEMP thruster
    Zeng, Ming
    Liu, Hui
    Chen, Ye
    Wu, Jiahao
    Wang, Shangsheng
    Huang, Hongyan
    Yu, Daren
    VACUUM, 2022, 205
  • [28] Structure Optimization of Micro-Newton Class Radio-Frequency Ion Thruster
    Ma, Long-Fei
    He, Jian-Wu
    Yang, Chao
    Duan, Li
    Kang, Qi
    Tuijin Jishu/Journal of Propulsion Technology, 2021, 42 (02): : 474 - 480
  • [29] Inexpensive optically isolated nanoammeter for use with micro-Newton electric propulsion technology
    Aplin, Karen L.
    Smith, Katharine L.
    Firth, John G.
    Kent, Barry J.
    Alexander, Matthew S.
    Stark, John P. W.
    JOURNAL OF PROPULSION AND POWER, 2008, 24 (04) : 892 - 895
  • [30] Materials testers using micro-Newton level forces based on the Levitation Mass Method (LMM)
    Fujii, Yusaku
    Hashimoto, Seiji
    ICIEA 2007: 2ND IEEE CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS, VOLS 1-4, PROCEEDINGS, 2007, : 2168 - 2171